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A COMPARISON OF NUMERICAL METHODS FOR IDENTIFICATION

AND OPTIMIZATION PROBLEMS INVOLVING CONTROL SYSTEMS WITH DELAYS

H.T. Banks, J.A. Burns and E.M. Cliff

ABSTRACT

In this report we present numerical results for two approximation
techniques for functional differential control systems. One technique is
based on an averaging scheme, the other on spline approximations. A number
of examples are considered and the techniques are applied to parameter
estimation problems and optimal control problems where the systems are given .

by differential equations with hereditary terms.
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1. Introduction.

This report is devoted to a detailed study, via numerical
experiments, of certain algorithms for the control and identification
of linear hereditary systems. In particular, we shall comsider two
schemes ("averaging' and linear "spline' approximations) which are

based on the general approximation method developed in (13, r21,

37, 757. The purpose of this report is to present examples which
facilitate a comparison of the numerical performance of these two
schemes for parameter identification and for optimal control pro-
blems. We shall not dwell upon theoretical convergence results.
The interested reader is referred to [ 5] for complete statements

of convergence results, error estimates and detailed proofs.

2. Notation and problem formulgtion.

The following notation will be used throughout the paper. For
~o< a<b<+ o, Lp(a,b;Rp) is the usual Lebesque space of equi-
valence classes of all functions x:[a,b] - R" such that ‘xlp is in-
tegrable. Let ¥ = [0,r] where r > 0 is a fixed real number, and
Z will denote the Hilbert space Z = R" X Lz(-r,O;Rn). For

0 <7t £r, the space R" X L2(-T,0;Rn) will be denoted by Z(r). The

Sobolev space w;l)(-r,O;Rp) consists of all fuﬁctions in L2(-r,0;Rn)
with derivatives also in Lz(-r,O) and norm given by

l¢|2(1) = |@|iz + |é|L§. We assume that } and S are compact con-
vexwgubsets of R* and Z, respectively. Moreover, S is assumed to

have the property that if ¢ € S and 0 € T < r, then the projected

function




QQ(S) ) "'TSSSO,

(2.0) $(s) =
0 > “r €£s < -7,

also belongs to S.

let Q=0 x Hand T = S x Q, so that a generic element of I has
the form v = (1,9,9) = (1,9,a,7). The elements Y of [ are called
the system parameters. We assume that for each a € (1, Ao(g), Al(a)

belong to R*X™, B(e) € B**™, C(a) ¢ RXT

.k
, D(@) € R X™ and K(a,-)
is an n x n matrix valued function with columns in Lz(-r,O;Rn).

If x:[~1, + ®) - R® and t > 0, the function xt:[-T,Oj - R" is

defined by xt(s) = x(t+s). For q = (a,T) € Q, the operator L(q) is

defined by
0
L(@)o = 4@9©) + A @o-T) + { K@ 5)p() ds.
=T

We consider the system governed by the linear retarded functional

differential equation

(2.1) x(t) = L(Q)x, + B(a)u(t), t 2 0,
with initial data

(2.2) x(0) =7 , Xg = ® >

and output

(2.3 y(t) = C(o)x(t) + D(a)u(t) ,

N e
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where u is a R" - valued, locally integrable control function and
(7s%) € Z. Given a control u and Y € I', the solution of the initial
value problem (2.1)-(2.2) at time t will be denoted by x(t;y,u).

The corresponding output to (2.1)-(2.3) at time t 2 0 will be denoted

by y(t;y,u).

REMARK. Note that the initial function ¢ need only be defined
on [-7,0]. If 1T <r and ¢ € L2(-T,0;Rn) we shall identify ¢ with
the projected function @ € Lz(-r,O;Rn) defined by (2.0). With
this understanding, any function in Lz('T,O;Rn) is also an element
of L2(-r,0;Rn). Consequently, for notational convenience we shall
not distinguish between @ € LZ(-T,O;Rn) and § € Lz(-r,O;Rn).

We shall be concerned with the system on a fixed finite interval
[0,T] where T > 0. The matrices G and W are n x n symmetric positive
semi-definite, R is an m x m symmetric positive definite matrix and

;1. ;2. *e*s Yy are given "observations'" in Rk at times tes

0 < tl < t2 < o0 < tM < T. The above notation is summarized in

the following list of nomenclature:

r=sxQ=8x0x¥H - Parameter set

Y= (M9:q) = (T,9,0,7) - System parameters

G, W ---=coommommmcccemccceenms Symm. positive semi-definite
R s=--mccmecmmcccccnncncncnne- Symm. positive definite

T -e-s-ssemesmocccnccconcoa- ~--- Fixed final time
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A
0 < tl < ese < tM €T ~~cecrmcraa- Observation times
;1: ;2: tee, ;M """"""""" Observations.

We now formulate two infinite dimensional optimization problems
associated with the hereditary system described above.

The identification problem may be stated as follows:

PROBLEM (ID). Given the contrel u in LZ(O,T;Rp) and observations

i € Rk at times ti, find the system parameters Y* € I which minimizes

M
(2.4) E(v) =% &
i=

- 2
MOBAYE N

3

1

where y(t;y,u) is the output to (2.1)-(2.3), and the minimization

takes place over T.

The optimal control problem may be stated as follows:

PROBLEM (OC). Given the system parameters v € I', find a

gontrol u* in LZ(O,T;Rw) which minimizes the performance criterion

T

2.5)  J(u) = X[x(DGx(T)] + % { " @nince) +u"(0)Ruto) } 0s,
0

where x(t) = x(t;Y,u) is the solution to the system (2.1)-(2.2).

The optimal cost will be denoted by J* (i.e. J* = J(u*)).

T el MEAQTT T ST e WGP W N T
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It should be noted that the above formulation of the identifi-
cation problem allows for the case where some of the system para-

meters Y = (7,9,%,7) are known.
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3. The abstract Cauchy problem and approximations.

In order to implement any numerical algorithm for solving the
identification and optimal control problems, it is necessary to in-
troduce approximations at some stage of the solution process.

The basic idea used in this paper is to approximate the hereditary
system by an ordinary differential system. We give a brief outline
of the general framework and present two particular schemes. Details
of the method may be found in 727, 73] and 757.

It is helpful to formulate the hereditary system (2.1)-(2.3) as
an abstract system in the Hilbert space Z. Although this formulation
is not essential if one is concerned only with numerical results, it
is informative and indeed necessary if one is to fully understand
the basic ideas underlining the methods to be discussed here.

Given q = (a,T) €0 x H, define for t > O the mapping

S(t;q):Z(T) =~ Z(T) by
S(t;q) (M) = (x(t;q), x.(+3q))

where x(+;q) is the solution to the homogeneous equation i(t)= L(q)xt
with initial condition (x(O),xo) = (M,9). It is well knawn that for
each fixed q,{S(t;q)}tzo is a Co-semigroup on Z(t) (see [27, [3M).

Moreover, the infinitesimal generator of {S(t’q)}tzo is the operator

¢(q) defined on the domain

§@(D) = ((M®) € 2(r) |o € Wy (=1, 0R™), 9(0) = 1)

by
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a@) (M,®) = (LQ)p,9) -

ess o BB

. k
l Define B(q):R" — Z(r) and C(q):2(r) =~ R* by B(q)u = (B(a)u,0)
and C(q) (M) = C(a)7, respectively. Corresponding to the hereditary
system (2.1)-(2.3) we have the abstract (ordinary differential)

system in Z(r)

(3.1) z(t) = q(q)z(t) + B(q)u(t),
(3.2) z(0) = (M,9),
(3.3) y(t) = c(q)z(t) + D(a) u(t)

A mild solution to (3.1)-(3.2) is given by the variation of para-

meters formula

t
(3.4) z(t;y,u) = S(t;q)(1,®) + S S(t-s;q)R(qlu(s) ds.

0
The following result is fundamental for all the approximation

" methods we consider. Its proof may be found in [47.

THEOREM 3.1. Suppose that v = (M,9,q) € and u € LZ(O,T;Rm).

I1f x(t;v,u) denotes the solution to the hereditary equation (2.1)-

(2.2), then z defined by (3.4) gatisfies

(3.5) z(t;y,u) = (x(t;Y,u),xt(-;Y,U))

for all t 2 O. In particular, the output to the abstract system

I
' :
lI (2.3). |
]
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It is clear from the above equivalence that the hereditary
system (2.1)-(2.3) can be approximated by approximating the abstract
system (3.1)-(3.3). In order to approximate (3.1)-(3.3), it follows
from the formula (3.4) and the equivalence (3.5) that one must
approximate the following;

i) the initial data (7,9),

ii) the semigroup {S(t;q)}tzo,

iii) the operators #(q), C(q)-
The approximation of the initial data is accomplished by projecting
(T,9) onto a finite dimensional subspace of Z(T). In order to
approximate S(t;q), recall that S(t;q) is an evolution operator

which is sometimes written

§(t;q) = éa(q)t,

even though g(q) is unbounded. However, this (formal) identification
illustrates the basic idea; S(t,q) is approximated by approximating
a(q). Similarly, we must approximate ®(q) and C(q). Consequently,

we construct approximating systems to (3.1)-(3.3) (and hence (2.1)-

(2.3)) by

1) projecting (7,p) onto some finite dimensional sub-
space of Z2(T),
and

2) approximating the operators @(q), 8(q) and C(q).

Although the above remarks are based on formal ideas, the

T TN R MIOEIT . YT A, e gy e
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steps outlined above can be effected in a rigorous mathematical
tramework. We shall not attempt to develop the relevant thcory in this
paper; rather we refer the interested reader to 757.

We turn now to the two particular schemes that we have tested
rather extensively on a number of numerical examples. The first method
(AVE) is based on step-function approximations to the initial function
@, while the second method (SPLINE) is based on linear spline

approximations to g@.

AVE: Corresponding to the partition t? = :él, j=0,1,e0¢ N, of
[-r,0],we define the subspace ZE(T) = {(Mp) € 2(r) |w is a constant
on each of the subintervals [t?, t?_l)}. Let PE(T) be the orthogonal

projection of Z(r) onto the closed subspace Zﬁ(T). In particular,

BT (M,0) = (Mo
with
N o _ g N N
¢ (S) j=1 °9j J >

-

where x?(s) is the characteristic function for rts, t?-l) and @? is

the mean (average) value

j=1, 2, «ee N. We take (n,vN) for our approximation to the

initial data (7,%). To approximate 2(q), observe that the first

= e T NPT ST S g P e e HIWE SRR ] AL Bl TR L

R R T whmnadiia ey Pound, <308 ¢ ,. T
. . V.
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coordinate of @(q)(T,p) is simply L(q)y and the second coordinate is

Let K?@!) be defined by

-

N
ti-1 0 X
x‘J.‘(a) - S K@,s) ds =\ K@,s) x;(s) s
tN -r
h]
N NN NN . N )
and suppose that (v,y) = (v,, £ V. X.) belongs to Z (7). Define
0 051 373 A

LN(q) and DN(Q) by

N
V.

N
Ky (@vy

N
Ly(@) (vg,¥) = Ag(a) vy + Aj(@)vy s

and

N _N
DN(q)(V09¢) = E

The operator ¢(q) is approximated by the finite dimensional operator

QN(q) on ZiéT) defined by

0" (@) (vg,4) = (W@ (4D, Dy @ N, 1)

If an appropriate basis for ZﬁfT) is selected, then R(N+1)n

can be identified with Zﬁ@r) and the above scheme leads to the

following approximating system. For N > 1 define the [ (N+1)n] x [ (N+1)n]

matrix AN(q) by




Ao(a)

Az

c.6) AV =1|o

L

K@+ » « K (@ A @+

-N
'-T.I 0 . . - 0
N -N
?I ?I . . .
N -N
. . o ?I '-T'_I

where I is the n x n identity matrix. The [(M+1)n] x m matrix

BN(q) and the k x [(N+1)n] matrix CN(q) are defined by

[B@) ]
0
3.7) BN(q) = .

L 0]

respectively.

and  €V(q) = (C(e) O ... 07 ,

The approximating ordinary differential system (of dimension

(M1)n is given by

(3.8) Neey =
(3.9) Ny = zg
(3.10) yh(e) =

AV 2N t) + BN (Qu(t)

cN@zN(e) + Dladuce) ,

—

B




=12~

where zg = col(n,wﬁ,-o-,wg). The approximate system (3.8) - (3.10)

will be referred to as the AVE approximation to (2.1) - (2.3).

SPLINE: Corresponding to the partition t? = :ﬁl, j=0,1,.-4,N,

of M-7,0] we define the subspace %?(T) = {(@(0),p) € 2(1) | is a tirst

order (piecewise linear) spline function with knots at t?.i=0,l,...,N.}.

Let Pg(w) be the orthogonal projection of Z(r) onto Zz(T): Note

that if (7,9¢) € Z(7), then Pg(T)(ﬂ,@) belongs to p(2(q)). One can
argue that Pg(T)(n,w) - (M,®) as N = += and hence it is not un-
reasonable to expect that for (7,9) € 8((q)) |
R N N
lim PS(T) a(q)PS(T)(n,cp) = q(q) (Ms%) -
0

Consequently, we define QN(q);zz(T) - 22(7) by

(3.11) aN(q) = Pz(f) adq) P’;(T)-

In order to represent the operator aN(q) and construct an
ordinary differential system in Euclidean space, we follow the
general outline given by Banks and Kappel T87. Let eg,j=0,l,---,N
denote the scalar first order spline function on [-1,0] characterized

by

N N i
ej(ti>= éij, l! J=0) 1’ ...N ’

where 5ij is the Kronecker symbol. The matrix aN = [B?,-o-,e:+l]

defined by

N
1’

N_ . N N
) —[eo,e s, eN]®1




(where 5 denotes the Kronecker product) is such that the st

aN N N
= 0
8, (Bj( ) Bj)

j=1,2, ...,NM1l, forms a basis for ZS(T). With this basis Z:(*)
N+1 ]
is identified with R( )n and the following system may be con-

structed.

Let Q' (q) be the [ (W1)n] x [ (W1)n] matrix

-
N 1 1
1,-'-3 5 0 . . . 0
1 2 1 '
6 3 6
. . 0
N T .
(3.12) Q@) = : ‘ *
0 1 2 1
, 6 3 6
. 1 1
0 v 0 = =
i 6 3J
and
N
(3.13) HN(q) = Hl(q) + Hg(q)
where

N
Hl(q) and Hg(q) are [(M1)n] x [ (W1)n] matrices defined by
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. Eg_l(o) Al(a)+:§g(a)

r— "N )
Ay(@) + K (@) E’I‘(a) ..
0
(3.14) HT(q) =
0
with
B 0
K?(a) - S K(g,s) e?(s)ds ,
-r
and
y -y

0

(3.15) H§<q> =

%
AN
0 \\\\\

0

-k
5

|
l
-

0

\

-%

-¥

-

It follows (see [ 8 ]) that QN(q) = Pz(T)Q(q)Pz(T) has the

[ (M1)n] x [(M1)n] matrix representation




QRSN A T R
1
1

(3.16) Y= @1 i .

Define the [ (NM+1)n] x m matrix 'EN(q) and the k x [ (N+1)n] matrix

Q) by _
B(aﬂ
0 -~
31 g = Mot and M@ = [c@) o0,
LO ~

respectively. Any vector zN € 22(1’) can be written as

N
z =

™Mz

N N, _N
(e, (0),e)E, ,
=0 A
N n N N . o '
where E’j € R'. Thus, the vector z € ZS('r)c;m be identificd with the
vector col(gg,élf,...gg) in R(N+l)n.

The approximating ordinary differential system becomes

(3.18) Ny = W) + uer) ,
(3.19) ZN(O) = Zg >
(3.20). YNy = gw(e) + D@uce) , |

where zg is the vector in R(Nﬂ')n

We shall refer to the system (3.18) - (3.20) as tlr SPLINK approximation

identified with PI;(T)(T},cp) € ZI:(T)-

scheme for (2.1) - (2.3).

REMARK. When making computations involving the spline system

(3.18)-(3.20) one never actually computes [QN(q)]-1 but rather
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solves

(" = 6Nt

directly in order to obtain wN = KN(q)vN,
Both of the above schemes (AVE and SPLINE) fall within the
general theoretical framework presented in 757, wherc convergence

results and error estimates are given.

4. The approximating problems.
The system (3.8)-(3.10) will be called AVE and the system

(3.18)-(3.20) will be called SPLINE. Both are ordinary differentjal
systems (of dimension (N+1)n) that approximate the dynamical
response of the hereditary system (2.1)-(2.3). In order to state
an approximating identification problem, we must approximate the
constraint set .

Suppose that y = (n,w,q) € r and that Pﬁ(T)(j,@) and Pg(f)(ﬂ,¢)

(NML)n

have the representations in R given by

AT M) = (1,9), -0y

N N N
R (o) = (08707018

Let ni and ng denote the mappings from Z x R* x R to R(N+1)nx R x R
defined by

N N

A,y a,7) = R, M (M), 0,7)
and

pppreyy=—g—~"2 vt iy W "N
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T (Mesa,r) = (Bg(r) (1,0),a,7)

Thus motivated, we choose the approximating constraint sets as

N N
fi = :A I and Tg = 22 I'. For each of the systems (3.8) - (3.10) and
(3.18) - (3.20) we have the following approximating parameter ident-

ification problem:

PROBLEM (IDN). Given the contrel u in L,(0,T;R") and obser-

. - k : : N N f"N‘ N
vations y, € R at times t,, find the parameters Y, € Iy (g €Ty

which minimizes the fit error

(4.1) NNy = i
i

LR el <

N N - 2
. Py (e575w -y, |

where yN(t;yN,u) is the output to the AVE system (3.8)-(3.10) 1

(SPLINE system (3.18)-1¢3.20)), and the minimization takes place

N _N
over I, (over ‘S)'

Given a parameter y = (n,w,a,T), one may construct the
approximating systems AVE and SPLINE, corresponding to y. Let

N N
G and W be the (N+l)n square matrices defined by

PU TN

e e P

i, i s

" ; i - . . e e ]
Pr— P T R N A N NIRRT P . -
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. ]
G 0 . . . 0
0 0 . . . .
GN= o . . . . .
|
0 0 R . . 0
L
and _J
r -1
W 0 0
0 0 . . .
N .
w =
0 0 . . . 0
L -

For each of the approximating systems AVE and SPLINE we have

the following approximating optimal control problems: 1

PROBLEM (OCN). Given the system parameters Y € I', find a
control G: (32) in L2(0,T;Rw) which minimizes the performance

criterion

T
4.2) N = 5N TeNNr] + !,S (N TP )+ () Ru(s) Yds,
0

where zN(t) = zN(t;Y,u) is the solution to the AVE system (3.8)-

(3.10) (SELINE system (3.18)-(3.20)). The optimal cost will be

denoted by 3N(i.e. 3N= JN(GN)).
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For each N, the approximating identification and optimal
control problems are now finite dimensional in the sense that the

dynamical systems AVE and SPLINE are governed by ordinary differ-

. . . N+l

ential equations in R( )n. The basic idea is to solve (for

fixed N) each of these problems to obtain ?2, ?2, ﬁ: and GN. 1t
S

can be shbown that under reasonable conditions §2 and QN
S

"converge' to y* and ﬁi and ﬁg converge to u* (see [ 5] for a pre-
cise statement of the r:sults).

The remainder of this paper is devoted to the study of numer-
ical examples. In particular, we compute Qﬁ, ?g, ﬁz and ﬁg and
compare these values with the optimal values Y* and u¥ for a
number of hereditary systems. In doing so, we hope to demonstrate
that the method is feasible to implement and that acceptable con-
vergence rates are obtained.

All of the numerical results presented in the next sect ions
were produced by computer programs written at Virginia Tech and
Brown University. The identification problems were run at Virginia
Tech on an IBM 370/158 computer. A maximum likelihood (least
squares) algorithm was used to solve the approximating problem (IDN).
A complete discription of the method and listing of the code may be
found in the report [ 9]. The optimal control problems were run at
Brown University on an IBM 360/67 computer. For both the linear
and nonlinear control examples a conjugate-gradient minimization

algorithm (as described in [1]) was used to solve the approximating

problem (OCN).
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5. Numerical solutions to the identification problem.

In this section we present a number of numerical results for
the identification problem (PROBLEM (I1D)), that are based on the
approximation schemes (AVE and SPLINE) outlined in the previous
sections. In order to generate most of the data for testing the
algorithm we select a '"true'" set of parameters y¥*= (T¥*,y%,o*,T*)
and a control u and use the method of steps [1ll  to solve for x
on the interval [0,T].

In all of the examples presented below we used 7% = 1 and

u = uL, where uL is the unit step at t = { defined by

0 t<?4,
uL(t) =

1 L st,

and 0 <t < 1. The final time of T = 2 was used in most of the
examples (except 05.1). The observations ;i = y(ti) were gencrated
at 101 equally spaced time steps on [0,T]. In some examples noise

was added to the model to produce ''moisy observations"
ye) = y(e) + v(t),

where v(t) = col(vl(t),---,vk(t)) is a computer simulated vector
of normal random variables vi(t) (routine GGNQF of the IMSL library,
see IMSL Users Guide), each with zero mean and preset standard

variation.

[EPOIRER SO ey
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For each fixed N, the approximation Problem (IDN) was solved
using a maximum likelihood estimator (MILE). Since the MLE is an
iterative procedure it is necessary to supply a startup (i.e. an
initial guess) for the optimal parameter ?2 (or Qg for the spline
scheme). If B denotes an unknown parameter to be estimated (i.e.
B=aor B =r, etc), then BN’I will denote the estimate for EN
obtained after I iterations of the MLE applied to PROBLEM (IDN).
The startup value will be denoted by BN’O.

It is helpful to understand the numbering system for the
identification examples. The first two characters in the example
number indicate what model is used for the generation of data. The
number after the decimal point refers to the specific numerical

run. For example, all "S2" examples are problems where the 'true"

system is governed by
x(t) = .05 x(t) - 4.0 x(t-1) + u 1(t) ,
xo(s) =1, -1ss <0,
y(t) = x(t) .

In EXAMPLE S2.1 we assume that af = -4.0 is unknown and attempt
to estimate this parameter, while in EXAMPLE S2.2 we assume that
the time delay r* = 1.0 is unknown and estimate this parameter,

etc.

e ST T X PR TR G SO A 5t et

A Bt L -
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The figures are labeled at the top. In the left hand corner
the lettering indicates the example number, the value of N and the
approximation scheme. For example, S2.1N16A refers to Example

§2.1, N = 16 and the AVE procedure. The lettering in the right

hand corner represents iteration number in the MLE algorithm.
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ID MODEL $2
== e

! This is a simple scalar model with discrete delay. The

i RN

system is govermed by
x(t) = .05 x(t) - 4.0 x(t-1) +u 1(t),
with initial data

x(0) = 1 and xo(s) =1, -1<gs«<0.

T

The output is simply the state at time t, viz:

y(t) = x(t) .

?z As described above, this system was analytically integrated (using
I the method of steps) to construct the solution on [0,2]. The
i resulting solution was evaluated at 101 equally spaced points to

generate data for the following four examples; S2.1 - S2.4.
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EXAMPLE §2.1

In this initial example we consider the problem of identifying
a single parameter, namely the coefficient of the delayed term in
the model S2. Thus, in our parametric model the dynamics are des-

cribed by
x(t) = .05 x(t) + alx(t-l) +u 1(t)

with initial condition

i
—
-

x(0) = 1, xO(s) = -1 s <0,

and output
y(t) = x(¢t) .

For N= 2, 4, 8, 16 and 32 the resulting Problems (IDN) were
"solved" using a version of the computer code described in [ 97].
Since the numerical algorithm is iterative, it is necessary to

provide a "start-up" value for a; and in this example we used

The algorithm provides a sequence of '"improved' estimates for 3?
and will terminate when either a maximum number of iterations is
achieved, or when the norm of the gradient of EN is less than 10-3.

In the latter case we claim that the procedure has "converged'.

T T SRR AT, AT NI N 5t 5 R

5 e e e
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Results of the numerical experiments for this example are

shown in Table $2.1.1. Notice that for N = 2, the AVE procedure
had not '"converged'" at 10 iterations, and that the SPLINE estimate
of the parameter at N = 4 is better than the AVE estimate at N= 32.

By using the parameter values we can estimate the rate of

convergence as

o &EEHeNH/”eZN”]
° tn 2

o < ssmediache, it e ko igaid o

where ey = QN - ¥Y* is the error. From N = 2 in the SPLINE estimates
we find § = 1.7, while for N = 4 in the AVE result we estimate

§ = .12. Such estimates for the rates of convergence must be

viewed with caution because the numerical values are corrupted by

sources of error other than the approximation scheme.

Figures S2.1.1 and S2.1.2 show the converged data fits at
N = 16 for AVE and SPLINE, respectively. The N = 32 results are

essentially the same as those for N = 16.

Since computer requirements are of practical interest, we
note that for N = 32, the AVE algorithm took about 15 sec. per
iteration, while the SPLINE procedure required a little over 16
sec. per iteration. This comparison is not completely fair
because the majority of the code used is common to both AVE and

] SPLINE and it is structured to provide the generality needed for

T N T S T 0 ¥ i oty S
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the SPLINE method. A streamlined code for AVE alone might pro-

duce as much as a 20% savings in execution time.

AVE SPLINE

~N ~N
N 2 Ienl | x Y ley!
2 did not converge 2 -4.1655 .1655
4 ~4.1144 1144 4 -4.,0505 .0505
8 -4.1050 .1050 8 -4.0208 . .0208
16 -4.,0852 .0852 16 -4,0139 .0139
32 -4.0584 .0584 32 -4.0122 .0122
a’l‘ = =4.0000 “’1‘ = -4.0000

TABLE S2.1.1

e ——————
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! SP. IN1GA [TR= 7

' 3.00 T T T T | I ] T T -

l T x(t) = .05x(t) + alx(t-l) + u.l(t) 7

l 180 + +++ data a’{- -4.00 i

E —— AVE Model ai6’7 = -4.,0852

0.60

—

.' |

f ~0.61 ,

l
|

' |

j 3o t———F— —t—t——+—

0.00 0.40 0.80 1.20 1.60 2.00
i TIME
l FIGURE S2.1.1
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[s]
o

3.00 Tri —— m'T"“"T“_‘“T__"—’_T_‘"‘MW'T”'"'“—'_] 1
+ )
X(t) = .05x(t) + alx(t-l) +u 1(t)
1.80 -—4-— +++ data a’lk = -4.00
——  SPLINE Model ai6’4 = -4.0139

0.80
-0.861
~1.81
-3.00 —t + + f }

0.00 0.40 0. 80 1.20

TIME

FIGURE 82.1.2
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EXAMPLE $2.2

In this example we consider the problem of identifying the
time delay alone, with all other parameters known. Thus, the

parametric model of the system is
x(t) = .05 x(t) - 4.0 x(t-r) + u 1(t)
with initial condition

l1,~r s8 <0,

il

x(0) =1, xO(S)

and output

y(t) = x(t) .,

As before, we conducted numerical experiments for N =

16 and 32. OQur start-up was

while the true value is of course r¥ = 1.0, At N= 2 and N = 4
an interesting phenomenon appeared; namely, for the start up value

N, 0
of r

= 0.5 the AVE procedure "converged" and the SPLINE pro-
cedure "diverged'. To examine the causes of this result we
evaluated the cost function Ea for AVE and SPLINE at a variety of
r values. The interesting results of this investigation are shown

in Figure S$2.2.1. 1t happens that the SPLINE cost function is

more "oscillatory" than the AVE cost function for N = 4. Both

i Bl e Rt A el st S T e : - e R R
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have two local minima. However, the SPLINE cost function is such
that the start up r4’0 = 0.5 is not in the valley of the ''global"

minimum (}é = .9972), while for the AVE procedure, r4’0

= 0.5 is
in the valley of the global minimum (?2 = 1.2001).

When the cost function has more than a single local minimum,
the system is said to suffer a lack of (global) identifiability
(at least for the specified input). In such cases it is important
to have good start-up values for the parameters.

Table S2.2.1 illustrates the convergence for this example.
Note that for the reasons outlined above, different start-up
values were used for AVE and SPLINE. Again the results show that
for N = 2 the SPLINE algorthim gives better estimates of the

parameter r than AVE for N = 32. Figures §2.2.2 and $2.2.3 show

the N = 4 data fits for AVE and SPLINE, respectively. !

AVE %= 0.5 seLIE %= 0.8

v A eyl N 2 len|

2 1.4603 4603 2 1.0084 .0084
4 1.2001 .2001 4 .9972 .0028
8 1.0923 .0923 8 .9983 .0017
16 1.0439 .0439 16 .9986 .0014
32 1.0212 .0212 32 1.0018 .0018
r* = 1.0000 rx = 1.0000

TABLE §2.2.1

T A B N, v W Y
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3.00 “r‘—‘r—““ R S S S R SRR BN
T X(£) = .05x(t) -4x(t-x) + u ,(¢) .
1. 80 1 +++ data rk* = 1.0
—— AVE Model r4’6 = 1.2001
T e
0.60
>__
-0.61
-1.81
3,00 F—F b | !
0.00 0.40 0.80 1.20 160 2.00 |

TIME .'

FIGURE S2.2.2
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i 3.00 | T T i T N R R A G
3
5’? |
| -+ k(E) = .05x(t) = 4x(t-r) + u_ (£) .
i
i
i L * =1, .
{.80 | +++ data T 1.0000
~——— SPLINE Model r4’5 = ,9972
)
! 0.60
i
Q ~
! —t
! S

FIGURE S52.2.3
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EXAMPIE S2.3

In this example we consider the problem of estimating the two

coefficients in the model. Therefore, the system is modeled by
x(t) = aox(t) + alx(t-l) + u.l(t)

with initial data
x(0) = 1, xo(s) =1,-1<s5<0,

and output

y(t) = x(t) .

Numerical runs for N = 2, 4, 8, 16 and 32 were conducted. The

start-up values for a6 = .05 and af = -4.0 were chosen to be
N N,O
0. .03 and a = -3,0 .

8 1
Table S2.3.1 contains a summary of the estimates for both AVE and
AN AN
SPLINE. The £, errors (lao - 33‘ + ‘81 - a{[) are given in Table
$2.3.2. Note that the SPLINE estimate at N = 4 is better than the
AVE estimate at N = 32.
Figures S2.3.1 and S2.3.2 show the converged data fits at

N = 16 for AVE and SPLINE, respectively. Observe that the SPLINE

procedure provides almost a 'perfect' match to the data.

. R - - - - —— g
N TN RN M, 0 I S s e W vy N . R Sy . [T DAl - 4 gt
e 4 TR ALY e * v
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AVE SPLINE
A N N a il
— _0 1 - L L
2 1.0869 -4.6236 2 .0995 -4.1639
4 .6525 -4.3160 4 L0417 -4.0523
8 .3825 -4.1660 8 .0439 -4.0222
16 L2245 -4.0898 16 . 0449 -4.,0151
32 .1384 -4.0505 32 L0454 -4.0133
vk = .0500 -4.,0000 v = .0500 ~4.0000
TABLE S2.3.1
AVE SPLINE
E \eN‘ § ‘eN‘
2 1.6605 2 L2134
4 .9185 4 .0606
8 .4985 8 .0283
16 .2643 16 .0202
32 .1389 32 .0179

TABLE 82.3.2
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—
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|
_ 1
3 |
f |
4 ~1.81 |
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EXAMPLE S2.4

This is the first example in which the "original' identification prob-
lem is truly infinite dimensional. In particular, we seek to estimate
the initial data (n,¢) € R x L2(-l, 0; R) and the coefficient of the

delayed term. Thus our model is described by the scalar equation
x(t) = .05 x(t) + alx(t-l) + u‘l(t) .
with (unknown) initial data
x(0) =1, xo(s) =p(s) , -lss<0,
and output
y(t) = x(t)

For each N = 2, 4, 8, 16 and 32, the approximating problem (IDN)
was formulated as discussed in Section 4. Thus, for AVE we seek

the "parameter"
~N . N N N
YA = (n»fplsCst"':‘PN:al) ’

where (q,¢T,¢§,...,¢:) represents the projection of the initial

data. Similarly, for SPLINE we seek the ''parameter"
N _N N
?ga (goigll"'th!al) ’

where (gg,gﬁ,,---,g:) represents the SPLINE projection of the initial

data. The "start-up" for (7,p) € R X Lz(-l, 0; R) is the zero
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initial data (0,0), while its true value is (1, 1). The

“start-up" for af = -4 is

a = ‘3-0 .

Table S2.4.1 provides an overview of the results. Because the
initial data is in R X LZ(-l, 0; R) we have only displayed the
Z-norm of the error and the estimated value for a?. The com-
parison of the two schemes is quite striking, particularly the
relative ability to estimate the initial data. Shown in Figure
S2.4.1 are graphs of the true initial data and the corresponding
estimates produced by AVE and SPLINE for N = 4. It is apparent
at least for the chosen '"start-up'" values that the SPLINE pro-
cedure readily finds good estimates for the parameters, while the
AVE scheme has considerable difficulty.

It is interesting to compare the sequences of data fits
generated as the iteration procedure evolves. Figures S2.4.2
through S2.4.4 show the data matches from the AVE algorithm for
iterations O, 4 and 9, respectively. From the match at iteration
4 (Figure S2.4.3) it might be deduced that AVE is in trouble. How-
ever, at iteration 9 the fit is quite good and Figure $2.4.4 does
not give any hint of the poor values of the parameters indicated
in Table S§2.4.1.

Figures $2.4.5 through S2.4.7 illustrate the SPLINE data

matches at iterations O, 4, and 9 respectively. Again the iteration




-40-

4 matches indicate some difficulty while by iteration 9 the match
is quite good. It happens that the SPLINE estimates of the para-
meters are excellent.

Although one can not be certain, it does appear that AVE is
converging to a local minimum of EN. As in example 52.2 we
suspect that the IDN problem for AVE suffers a lack of identifiability.
The IDN problem for SPLINE seems to be much better behaved.

In order to further investigate identifiability for problems

p’ with unknown initial data we essentially repeated this example

with identical dynamics, changing only the initial data to

ﬁ,J n:l, cp(s)=1+s,-lss<0~

Using the same start-ups as above we found that SPLINE converged

for all N values, whereas AVE never did. Results are summarized

in Table S2.4.2.

AVE SPLINE

N £h lz* () -2N©))| | e o-2¥0))
; 2 -4.4103 2.08 2 -4.4382 .1595
“ 4 -4.9924 4.53 4 -3.9381 .0867
8 -4.2651 41.76 8 -4.0031 .0287
16 did not converge 16 -4,0031 .0201
32 did not converge 32 -4.0001 .0386

TABLE S2.4.1

PR e o W P e .,.“,rﬂmmﬂﬁﬂw
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AVE SPLINE
~N A -N A~
N A IO 250 ay llz*(0)-2% )|
2 2 «4.5201 .0563
4 did not converge 4 -4.0975 <0318
8 8 ~4.0282 .0123
16 16 -4.0123 .0193
32 32 -4.0122 .0936

BT T T AT YTV, W IO e g e . WRCRTP NN

TABLE S2.4.2

(linear initial data)
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5. UNBHV

3.00 T T T
-+  x(t) = .05x(t) + alx(t-l) + u'l(t) .
x(0) =17, xo(S) = ¢(s)
1.80 T 7
+++ data af a2 -4,0
——  AVE Model 3% = -3.0 lz*0) - 2200y = /Z
0.60
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1.80 7T +++ data )
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T TN YL o 5 T I R adanianins £



Tl

B o e =

3.00

1.80

0.60

-0.61

-1.81

-3.00

0.

oc . UNBHV

-45-

T T 1 T
<4 x(t) = .05x(t) + alx(t-l) +u 1(t) -
x(0) = M, xy(s) = ¥(s)
T +++ data a} = -4.00 =
—— AVE Model % = 42651 |2*(0) - 2270 = 41.76
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TIME

FIGURE S2.4.4

2.00




3.00

0.60

-0.6!1

-1.81

-3.00

46~

1

+

Sc. LLTNEB]SPﬁ

x(t) = .05x(t) + alx(t-l) +u 1(t)
x(0) = 1, x5(8) = ¢ (s)
+++ data ai“ = -4.0
—— SPLINE Model a0 = -3.0 liz*(0) - 22200y} =

+* ‘.Q‘
+, +++
L *,ﬁﬁ w +
bttt
.00 0.40 0.80 1.20 1.60

T IME

FIGURE S2.4.5

.00




.
3
sy

aniiihe Sl L

3.00

1.80

0.60

-0.61

-1.81

-3.00

-47-

S2.UNBSP [TR= 4

T L

__)'((t) = ,05x(t) + alx(t-l) + u l(t)

x(0) = 0, x4(8) = (s)

+++ data

——— SPLINE Model

TIME

FIGURE S 2.4.6
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ITR= 9

3.00 I T T T T
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ID MODEL 0l

This model describes a (reasonably realistic) mechanical
oscillator with retarded restoring and retarded damping forces.

The system is governed by the second order equation
®(t) + 36x(t) + 2.5 x(t-1) + 9x(t-1) = u.l(t)
with initial data
xo(s) =1, io(s) =0, -1 s <0,
and scalar output (which represents position)
y(e) = x(¢t)

This second order equation is equivalent to the two dimensional

system

xl(t) 0 1 xl(t) 0 0 xz(t-l)

da
dt

xz(t) -36 0 xz(t) -9 -2.5 x2(t-1)

with initial condition

-y oy e 2 R it S sl ad ST MRS Su
e L ST B o al N RS P e | g . . R oo S y ' ) ,‘\ "
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and output
xl(t)
y(t) = [1 0]

xz(t)

This system was integrated forward (using the method of steps) to
obtain the analytic solution on [0,2]. Again, data was generated
at 101 equally spaced points by evaluating the true solution. This

data was used in the following examples; 0l.1 - 01.2.
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t
EXAMPLE O1.1
q
This experiment is devoted to the estimation of the three
coefficients in the model. Th2refore, we assume our model is
described by the second order equation
. 2 .
%¥(t) + w x(t) + aox(t-l) + alx(t-l) =y l(t) 3
]
with initial data 3
;
xo(s) =1 , ko(s) =0, -l1<s<0, i

and output
y(t) = x(t) .

The problem is to estimate w, a, and a;.
Since the basic system is two dimensional for each N the approx- ¢
imating systems for AVE and SPLINE is of dimension 2.(N + 1). In

order to keep the program size reasonably small (our objective is

to test the algorithms and not to develop computer codes) we
solved the approximating identification problems for N= 2, 4, 8
and 16. This allowed us to use the same code for scalar and two
dimensional systems without increasing the '"'size'" of the code;

therefore keeping the computing cost minimal.

]

6, ak = 2,5 and a* = 9 were

The start-up values for yp* 5 )

1.0 , a’f’°= 5.0.

wN’o = 500 > a
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Tables 01.1.,1 and 0l1.1.2 show the parameter estimates for
AVE and SPLINE, respectively. Observe that the N = 16 estimates

produced by the AVE procedure are such that the ''relative Ll
el

! '

by*!
SPLINE estimate has relative Ll error of less than l%.

error" ( ) is approximately 20%. On the other hand the N = 16
Figures 0l1.1.1-10.1.4 compare the data fits for N = 2. The
start-ups (ITR = 0) are shown as well as the converged fits
(ITR = 10 for AVE and ITR = 14 for SPLINE). Figures 01.1.5-01.1,6
show the converged data fits for N = 16. Note that in this
case bocth AVE and SPLINE converged after 4 iterations of the MLE
algorithm. However, the SPLINE procedure provided a near perfect
data fit.
This example is typical of most of the vector systems that
were studied. Generally speaking, the SPLINE algorithm produced

better parameter estimates and data fits.

AVE
~N N ~N

N ol % 4 len!

2 6.3864 -12.8383 4.2478 20.4769
4 5.7480 - 5.4170 7.3614 9.8076
8 5.6564 - 1.8301 9.7648 5.4385
16 5.7873 3.6873 6.6713 3.7287
y* = 6.0000 2.5000 9.0000

TABLE 01.1.1

c» -
O LWL BN T

S e S S i S riant, AIUS LA TST A0
ved o ) il el
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SPLINE
N ~N ~N
v 4 g S
2 6.1102 -5.7950 10.3718 9.777
4 6.4861 5.6291 13.2680 7.8832
8 6.0432 2.8791 9.2921 7144
16 6.0079 2.5761 9.0591 .1431
Y 6 .0000 2.5000 9.0000

TABLE 01.1.2
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1. IN2AY

[ TH= 0

2.00 T r —T | Bl
1 %(E) + wx(t) + agk(t-1) + a;x(t-1) = u_, (t) ]
1.°0
5.40
>.,
~0.41
~-1.20
i
i
’ 1 +++ data w* = 6.0 ag = 2.5 a’i* = 9.0 _
—— AVE Model w20 = 5.0 ag’o - 1.0 ai’o = 5.0
B e e e U T
0.00 0.40 0.80 1.20 1.60 2. U

T IME

FIGURE 0l.1.1
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|
- O1.1IN2AY [TR= 10
| l 2.00 I I T T T T T - T
; ' 1 x(t) + wzx(t:) + ao:'c(t-l) + a;x(t-1) = u ,(t) _
l x
1. 20 T — :

1 0.40

1

-0.41

; -1.20
41 +++ data w* = 6.0 a¥ = 2.5 a‘{ = 9,0 -
—— AVE Model 021026 3864 ag’lo- 12.8383 af’lo-a.zan
| | | 1 ] | ] | i3
‘ -2.00 l T iR 1 T ! -+ i
0.00 0.40 0.80 1.20 1.60 2. 00 :
i 1
l L FIGURE 01.1.2
| .
e o Tzt BTN WO ROATW B W0y 77 " S
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01.IN2SP o

2.00 T |
1.20
0.40
.
-
-0.41
-1.20
+++ data wx = 6,0 33 = 2.5
2,0 2,0
———- SPLINE Model w' =50 a.’ = 1.
0
2,00 e TG et
0.00 0.40 0.80 1.20
T IMC

FIGURE 01.1.3 *
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; Ty |
O1. IN2ST I TR= 14
2.00 - r T T Em— T T r
T %+ w’x(t) + agk(t-1) + a;x(t-1) = u ,(t) .
1.20 T B
0.40
-0.41
-1.20
+++ data w* = 6,0 aa‘ = 2.5 a‘i’ = 9,0
~—— SPLINE Model w?’% = §.1102 a214= _5.7950 ap*1%210.3718
-2.00 i i - — =ttt} ]
0.00 0.40 0.80 1.20 1.60 2.00
TIME

' FIGURE O1.1.4
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O1. INIDH [T 4
S00 T ST T T T 7 i R
4 %x(t) + wzx(t) + aoi(t-l) + alx(t-l) = u.l(t) |
1.20 T |
|
0.u40
.
>___,
~0.u1
-1.20
a"l‘ = 9.0
ai""‘ = 6.6713
-2.00 — —t =t A . ‘
0.00 0.40 0.80 1.20 1,50 2. 00

T IML

FIGURE Ol.1.5
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FIGURE 0l.1.6
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EXAMPLE 01.2

In this example we identify only the time delay r. The system

is assumed to be governed by the model
%(t) + 36x(t) + 2.5 x(t-r) + 9x(t-r) = u.l(t) ,
with initial data
xo(s) =1, ko(s) =0, -rss <0 ,
and scalar output

y(t) = x(t) ,

where r is the unknown delay.
This example proved to be very interesting. The start-up

r* = 1.0 was taken to be

rN’O = 1.2

At N = 2, the AVE procedure did not converge (in fact estimates
for fz were growing without bound), while the SPLINE algorithm
converged to the estimate ?2 = 2.3476. At N = 4, SPLINE produced

the estimate ?4 = ,9830. However, for N = 4, AVE converged to the

estimate of ?4 = 4.8694. For higher N, the SPLINE procedure pro-
duced better and better estimates. At N = 8 the AVE scheme pro-

duced a sequence of MLE estimates that oscillated between the values

.7000 and 1.3000. More precisely, the MLE iterations continued to

e

]

LT T L Ty’ DT TY, TR DU IR i
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produce sequences similiar to
eee 7113, 1.0477 ,1.2755, ... , .7082,1.0396, 1.2811 +.. . v

Consequently, the N = 8 AVE scheme never 'converged'"! At N = 16,
both AVE and SPLINE converged to reasonable estimates of the
parameter r.

N
This example was repeated using a start-up value of r 0 .8

Bt

and the results were exactly the same. Table 0l.2.1 contains a

summary ot the convergence for this example. Figures 01.2.1-01.2.4

illustrate the start-ups and converged data fits at N = 16 for AVE

Fi and SPLINE.

AVE SPLINE
~N N
N 2 el N i Jenl
2 did not converge 2 2.3476 3.3476
4 ~4.8694 5.8694 4 .9830 .0170
: 8 did not converge 8 .9939 .0061
16 .9274 .0726 16 .9987 .0013
'
g
Y r* = 1.0000 rx = 1.0000
TABLE 0l1.2.1
' ;-« AT ';" - - |

e e e T T g
7 ) R

T 5L BT - AT 7 vy PP kil

-~ Wiy Vv &
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1.20
0.40
-0.41
§
j -1.20
j
~++++ data r¥ = 1,0 7
—— AVE Model 16,0 . 1.2
-2.00 —t
0.C0o 0.40 0.80 1.20 1.60 2.00
TIMC

FIGURE 01.2.1
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F
3 2.00 1 T I 1 T T T T T T
4 %(t) + 36x(t) + 2.5%(t-r) + Ix(t-r) = u 1(t) .
1.20 T 7
0.40
| -
{' —
-0.u1
-1.20
-T +++ data r* = 1.0 .
—— AVE Model 2654 L 9274
~2.00 —1 1' % % % 1 t % 1 ]
0.00 0.40 0.80 1.20 1.60 2.00

TIME

FIGURE 01.2.2
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0.40

—

>__
-0.41
-1.20
-2.00

c.

®(t) + 36x(t) + 2.5%(t-r) + 9x(t-r) = u

+++ data r* = 1.0
—— SPLINE Model 1005,
| n | | L
T f l 1 1 t
00 0.40 0.80 1.20

TIME

FIGURE 01.2.3
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' T O 10 ;
O1.2N16HSY RS .
' 2.00 T- i o B S e it R ' 1
5
l T X(t) + 36x(t) + 2.5%(t-r) + 9x(t-r) = u ,(t) - i
i 1.20 T
|
o.u0 T :
i
‘ ~
: — -+ ;
i ~0.ut T
? l
-1.20 T 4
-+ ~
+++ data r*= 1.0
—— SPLINE Model 1604 = 9987
It
; -2.00 —t—4—4-—F—4 — -}
0.00 0.40 0. 80 1.20 1.60 2. 0¢

TIME

FIGURE 0l.2.4
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ID MODEL 02

This model is the oscillator governed by the equation
x(t) + 16x(t) + 10x(t-1) - 10x(t-1) = u 1(t) s

with initial data

-l <ss <0 ,

i
o

XO(S) =1 > ;{O(S)

and scalar output

2 y(t) = x(t) .

As before, data was generated at 10l equally spaced points by
solving the system analytically and evaluating the solution. This

| data was used in the following examples; 02.1 - 02.2.

< —— e

-—— — e o — SRR SR e of Sl and, AR g Tt "’,T""’*"‘. T
. * ¢ N TN Y, A golad ol S e,
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EXAMPIE 02.1

{ Here we identify all three of the equation coefficients. The

model is described by
®(£) + wix(t) + agk(t-1) + ayx(t-1) = u | (¢)

with initial data

]
o

xO(s)zl, :’co(s) , ~-l<s<0,

and output

y(t) = x(t) .

We seek to estimate the true parameters w* = 4.0, a* = 10.0 and

: i
2 a{ = -10.0. Start-up values for these parameters were selected to
be
; N,O N,O N, O
' WY = /20, ay = 0.0, a’ =-9.0.

Runs were made for N= 2, 4, 8 and 16. The results for AVE and
ﬁ SPLINE are summarized in Tables 02.1.1 and 02.1.2, respectively.
Again, the error |eN‘ is taken to be in the 1, norm, and the

. relative Ll error at N = 16 is about 3% for AVE and less than 17

; for SPLINE. :
Figures 02.1.1 - 02.1.2 show the N = 16 AVE data fits for the
start-ups and converged values of the parameters. Figures 02.1.3-

02.1.4 show the N = 16 SPLINE data fits for the start-ups and

-
)

[ H,_Y.Ta,.,._:,.‘.r.r:,..:.'.
.. »:vf ' L LA d
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converged values of the parameters. The SPLINE procedure clearly
does better.

In this example (as well as others) we checked the CPU times
required for each run. The two schemes AVE and SPLINE basically
require the same amount of computer time for each iteration of the
MLE algorithm. For example, at N = 16, the AVE scheme used approx-
imately 17.75 sec/ITR while the SPLINE scheme used approximately

18.40 sec/ITR. Such figures are typical of all the runms.

AVE
AN ~N ~N

X il 20 il eyl
2 did not converge

4 did not converge

8 3.4386 12.3634 -6.6389 .7128
16 3.9826 10.4641 -9.7997 .6818
v* = 4.0000 10.0000 -10.0000

TABLE 02.1.1

R T,




16

3.8092
3.9751
3.9963

3.9943

4.0000

9.9323
9.9511

9.9920

10.0000

-9.3642
-9.9241
-9.9978

-9.9812

-10.0000

.1685

.0548

.0325

TABLE 02.1.2
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02. IN1GA

R e L N T

x(t) + wzx(t) + aoi(c-l) + alx(t-l) =y 1(t)

T IME

FIGURE 02.1.1

+++ data w* = 4.0 83 = 10.0
—— AVE Model %9 /75 a(])'6’0=0.0

—
t

/"“"

I R S

4. (10
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R P - 7~
Jc2. INTGH FIH= 3
T T j ] r T e A
. 2 ,
x(t) + w x(t) + aox(c-l) + alx(t-l) = u l(t) .
+++ data w* = 4.0 33 = 10.0 33 = -10.0 ;
a
T —— avE model  w'®7-3.9826 a2’ ?=10.4641 al®? = -9.7997 :
i

T
JF
4
+
[

.
0.00 0.40 0.80 1.

0.00

V]
O
D
(o8]
AV
&

l
I
! TIME i
i

FIGURE 02.1,2
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02.INIGS [TR= O
3.00 T 1 I 1 T T e
4 ®(t) + wzx(t) = aoi(t-l) + a;x(t-1) = u_(t) ]
+++ data
2.40 7T _____ SPLINE Model
1.80
—
)..
1.20
0.60
0.00
0. .00
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' 072. IN1D 5 I TH=U
' 3,00 T T T T . I e At
L ko) + ofx(e) + agk(e-1) + ajx(e-1) = u (&) B
+++ data w* = 4.0 as = 10.0 ai = -10.0

2.40 T —— SPLD Model o'®'*=3.993 al®% - 9.9920 a1%% - -9.9812 |
{

+ |

T o1

000 A

G.ae G.40 0.80 1.20 1.60 2. 00

TIME

FIGURE 02.1.4
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EXAMPLE 02.2

3 e

e

In this problem we seek to estimate the coefficients of the
delayed terms and the time delay itself. 1In particular, we assume ;

that the system is governed by the model
x(t) + 16x(t) + aoi(t-r) + alx(t-r) = u.l(t),
with initial data
xo(s) =1 , io(s) =0, -r<sss0 ,
and output

y(t) = x(t) ,

MR 5 . e e B

and the true parameters to be estimated are ag = 10.0, aI = ~10.0

and r* = 1.0. Start-up values for each run were

N,O0
0

=11.0 , av%= 90, %=1.2.

Convergence results for this example are summarized in Tables 02.2.1

and 02.2.2. At N 16 the relative Ll error for AVE is approximately

3.5%, while the N = 16 SPLINE scheme produced a relative Ll error
of less than 17%.

Figures 02.2.1 and 02.2.2 show the N = 4 converged data fits
for AVE and SPLINE, respectively. For N > 8, the data fits are

nearly perfect and are not shown.

TSI smmmemms T TTTT S = e i sl kaiiin Siiest PRl e syl TFY S
N . . ho, e I
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AVE
~N ~N N
| " o it g o
' 2 did not converge
4 54.5124 -9.1876 2.4190 46.7439
; 8 19.4941 -9.4927 1.3506 10.3520
16 10.6433 -9.9089 .9998 . 7346
v¥* 10.0000 -10.0000 1.0000
TABLE 02.2.1
SPLINE
X % il = et
2 9.2585 -10.5360 1.0908 1.3683
4 10.0927 -10.0619 1.0076 .1622
8 9.9724 -10.0177 1.0010 .0463
16 9.9811 -10.0108 1.0017 .0314
v 10.0000 -10.0000 1.0000

L

TABLE 02.2.2
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10.0 a?

4,4

-10.0

= 54.5124 a;’ = -9.1876

0. 80 1.0

3. 00 I ) 1 1
+++ data a3=
2.40 7T —— AVE Model ag’4
-+
|
1.80 7T
P
.20 T
+.
|
080 +
4
0.00 =ttt —F - b o
0.00 0.40
o g T TR M

rx = 1.0

4% = 2.4190

S IO S
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3.00

(@8]
™
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.00

ae. 2l

}
T

——

®(t) + 16x(t) + aoi(t-r) + alx(t-r) = u.l(t)

+++ data

——— SPLINE Model

[

o O
-
i

a

77~

NS F

10.0

= 10.0927

T IME

4,4
a4

'7=-10.0619

r* = 1.0

r

4

42 1.0076
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1D MODEL 03

This model is also a harmonic oscillator; however we shall use
both position and velocity as output data. In particular, the

model is goverred by the equation
%(t) + &x(t) + x(r-1) - x(t-1) = u LB

or in equivalent vector form,

%, (t) 0 1%, 0 0 xl(c-l)‘l 0
d _
at - * * u e
%, (£) -4 0| x,(t) Lo-1 [x,(e-1) 1
with initial data
M x (s r 1 —1
1
(s) = , - lLss <0 ,

L XZ(S) 0
0

and vector output

y;(t) 1 0 x; (t)

y(t) = =

y,(t) 0 1 x, (t)

This system was solved analytically to obtain data at 10l equally

spaced points for Examples 03.1 - 03.4.
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EXAMPLE 03.1

For tihls problem we seek to estimate two of the systems co-

efficients. In particular, the model is assumed to be governed

by the equation
%(tY + 4x(t) + aoic(t-l) + alx(t-l) =u (0
with initial data
xo(s) =1, ko(s) =0, -1 <5 50,
and vector output (both position and velocity)

y,(t) x(t)
y(t) = =

¥, () x(t)

The true parameters 86 = 1.0 and af = -1.0 were estimated using

start-up values of

V= 75, a Y = 75 .

Runs with N = 2, 4, 8 and 16 were made and the convergence
results are summarized in Tables 03.1.1 - 03.1.2. Note that at
N = 16, the AVE scheme produced parameter estimates considerably
worse (about 167% ''relative Ll error'') than the N = 8 estimate

(about 7% error). The N = 16 SPLINE procedure gave estimates ywith

ivas than 2% relative error.
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Typical data fits are illustrated in Figures 03.1.1-03.1.8.

Figures 03.1.1 - 03.1.2 are the N = 8 AVE start-up data fits for
the position (Y(l)) and velocity (Y(2)), respectively. The con-
verged N = 8 AVE data fits are shown in Figures 03.1.2 - 03.1l.4.
Figures 03.1.5 - 03.1.8 show the same data fits for the N = 8

SPLINE procedure.

AVE
N ) 4 lenl
2 1.1437 - .8789 .2648
4 1.1504 - .9221 .2283
8 1.0951 - .9579 1372
16 .7215 -1.0483 .3261
vk = 1.0000 -1.0000

TABLE 03.1.1

R

N ettt o |
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SPLINE
N N ,
E jg El ‘eNl
2 1.2474 -1.0991 -3465
4 1.0256 -1.0350 .0606
8 .9936 -1.0137 .0398
16 .9739 -1.0100 .0361
y* = 1.0000 -1.0000

TABLE 03.1.2

N
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03. INBAY.

+++ data a

—— AVE Model a

4 ®(e) + 4x(t) + agk(e-1) + a;x(t-1) = u

0.00 0.u40 0.

TIME

-

.20

FIGURE 03.1.1

2.00
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03. INBARYV [ 1R= 0

1 | I T I

2.00

I
1

®(t) + 4x(t) + aox_(t-l) + alx(t-l) =u 1(t) ~ E

+++ data a

—— AVE Model a

'|
3 | Y'
|
|
|

‘ 0.40

7 ~0.41
:l
120 T -
-2.00 +—F— % % i +—t—
0.00 0.40 0.80 1.20 1.60 2.00

TIME %

FIGURE 03.1.2
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B
] 03. INBRYV [TRE= 10 ‘r
'a 1.50 T T T T T T T T T
| Yl
' 4 % 4x(t x(t-1 -1) = t A
x(t) + 4x(t) + aox(t ) + alx(t ) u.l( ) %
+++ data ag = 1.0 a: = -1.0 H
1.10 T —— AVE Model ag 1% = 1.0951 a3t = 9579 ]
i
{ 0.70
' |
|
0.30
‘j 0.1t .
f
— —
-0.50 + F | i % { { 1 i
0.00 0.40 0.80 1.20 1.60 2.00

TIME

FIGURE 03.1.3
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U3. INBAYV. [1h= 10

FIGURE 03.1.4

1 2.00 , ,
’ T %(t) + 4x(t) + agk(t-1) + a;x(t-1) = u (t) i
\ ° ¥
]
+++ data ag = 1.0 ai‘ = -1.0
t.20 —— AVE Model ag’lo = 1.0951 ai’lo = -.9579
3 0.40
!
: -0.u1
i
1 | -1.20 T .
i l
| 1 N | | | i
' -2.00 ! I ! | I 1 ! % ¥ :
' 0.00 0.40 0.80 1.20 1.60 2.00 :
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J3. INBOSP

1.50 .
Y1
4 R(E) + 4x(E) + agk(t-1) + a;x(e-1) = u ;(t) i |
i
+++ data a¥=1.0 a¥ = -1.0 i
0 1
1.10 T ﬂ ,
—— SPLINE Model ag’lo = .75 af’lo = -.75
£
:
0.70
0.30
a‘
ﬁ 0.11
} - -
g
4 i
-0.50 4
0.00 0.40 0.80 1.20 1.60 2.00

FIGURE 03.1.5
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+++ data

-

T

——— SPLINE Model
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NSO

T Ty T T

+
+++++ . ++++

+
+"‘*+
+

FR(E) + 4x(E) + agk(t-1) + ayx(e-1) = u | (E)

a

o %

,0

-1.0

= -,75

T
-
-
+¢+*’
+
+
R
o
++ =1
+
-

TIME

FIGURE 03.1.6
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03. IN8SP [TR= 17

1.50 T 1 T ] e SRR
Y1
T %(t) + 4x{t) + aoi(t-l) + alx(t-l) = u‘l(t) -
+++ data ag = 1.0 a’lf = -1.0
110 —— SPLINE Model ag’lz = .9936 a?’lz = -1.0100
0.70
0.30
~0.11 T :
1 ]
-0.50 t % % | } % } | |
0.00 0.40 0.80 1.20 1.60 2.00

T IME

FIGURE 03.1.7
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-0. 41

-1.20
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3. INBYF

3 At S Bt S el s S T T
Y2
:
¢
x(t) + 4x(t) + aok(t-l) + a;x(t-1) = u L (6 7 F
* = * - -
+++ data ag 1.0 a; 1.0 J
—— SPLINE Model ag’lz = .9936 a?’lz = -1.0100

TIME

FIGURE 03.1.8
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EXAMPIE 03.2

In this example we attempt to estimate all of the system co-

efficients. Consequently, the model is assumed to be of the form
. 2 . _
x(t) + w x(t) + aox(t—l) + alx(t-l) = u l(t:)

with initial data

xo(s) 1, xo(s) =0
and output
x(t)
y(t) =
x(t)
The true parameters u* = 2.0, 36 = 1.0, af = -1.0 were estimated

using start-up values of

PAER v O ag’o = .75, aV%< _.75

This example is again typical in that the SPLINE scheme pro-
duced better estimates than the AVE scheme (although the N = 2
SPLINE run did not converge). The convergence of the parameter
estimates is summarized in Tables 03.2.1-03.2.2. The N = 16

results show that the relative Ll error is about 5% for AVE and 1%

for SPLINE. The data fits for N = 8 and 16 were aearly perfect

fits for both AVE and SPLINE. Consequently, no plots are given.

I3
i3
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AVE
~N ~N
~N
N & %0 “1 lenl
2 1.2398 3.8802 1.3463 5.9867
4 1.7711 2.1018 - .2201 2.1106
8 1.8955 1.5372 - .6522 9895
16 1.9404 .9505 - .9033 .2050
v = 2.0000 1.0000 -1.0000
|
TABLE 03.2.1
1
SPLINE
3 ! c A & e |
% _ — 0 A N
j 2 did not converge -
g 4 2.0320 .9324 -1.1136 .2132
8 1.9995 .9956 -1.0124 .0173
o 16 1.9903 1.0149 -.9840 . 0406
3 L " 2.0000 1.0000 1.0000
‘ TABLE 03.2.2

§ 4 riadd
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EXAMPLE 03.4

For this examp'e we seek to estimate an initial function,
two system coefficients and the time delay. In particular we
assume that the initial position is a constant but unknown value

and hence the model takes the form

% (t) + 4x(t) + aok(t-r) + alx(t-r) = u.l(t)

with (partially unknown) initial data
xo(s) =C , xo(s) =0, -r<ss<s O

and vector output

x(t)
y(t) =
k(t)J
The parameters C* = 1.0, 36 = 1.0, af = -1.0 and r* = 1.0 were
estimated using start-up values
; N N h N,0
] ™0 < 0.0, ag’o = .9, a‘:’o = -9, 0= 9,

For each N = 2, 4, 8 and 16, the AVE scheme did not converge.
! At N = 2 the SPLINE scheme did not converge; however, at N = 4, 8
and 16 the SPLINE procedure converged to good estimates of the

parameters. This example was also run with other start-ups and

it was observed that unless the start-ups were reasonably close
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(i.e. as above) the SPLINE scheme also diverged. The parameter
estimates produced by the SPLINE scheme are listed in Table
03.4.1. The error |eN| listed in this table is the "Ll error"
= *_A *x_2N *x_2N *_aN
= llwl ¢w|L2+[r r {+!ao a0‘+|a1 a0|

eyl

= x| + jrx-2N) 4 |a3-3§| + |a*1=-3‘1‘1 )

Observe that the relative error at each N = 4, 8, 16 is between 1

and 2 percent.

Figures 03.4.1-03.4.2 show the N = 4 SPLINE data fits. Note

that the MLE required 29 iterations to converge.
SPLINE

N N N 20 ) leyl ,
2 did not converge —_—

4 .9960 . 9440 1.0135 -1.0085 .0820

8 .9998 .9999 .9937 -1.0137 .0203

16 1.0011 1.0156 .9874 -1.0131 .0434

v* = 1.0000 1.0000 1.0000 -1.0000

TABLE 03.4.1

[ SR e O ANBIGH AN g i o ) . — .
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+ %x(t) + 4x(t) + aok(t-r) + alx(t-r) = u l(t)
xo(s) =C, io(s) =0
+++ data C* = 1.0 r* = 1.0 ag = 1.0 a’l' = -1,0
SPLINE Model C**2%=.9960 £*2%.9440 ag’”-l 0135 a%'?%-1.0085
“T—
bttt -
0.0V 0. u0 C.80C 1.20 1.657 ’.

TIME

FIGURE 03.4.1
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|
!
|
-1.20 T ++ data C* = 1.0 r*x = 1.0 ag = 1.0 a} = -1.0 7
~— SPLINE Model **2%.9960 r**2%.9440 ag’29-1.0135 a‘l"zg--l.ooas
4 ..
B
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ID MODEL 04

This model is the oscillator considered in ID MODEL 03, with
noise added to the output. In particular, the system is governed

by the equation
%(t) + 4x(t) + x(t-1) - x(t-1) = u.l(t) .
with initial data
xo(s)':'l s io(s)so , -l €s 0,
and (noisy) output

x(t) vl(t)

y(t) = + s
x(t) vz(t)

where vi(t) (i=1,2) is a computer simulated normal random var-
iable with zero mean and standard deviations of 0.1 on the position
data (vl) and 0.2 on the velocity data (vz).

The random variables vi(t) (i = 1,2) were generated using
routine GGNQF of the IMSL library (see IMSL Users Guide) and
added to the analytic solution x(t) and x(t) of the delay equation
to produce data (;i,i= 1,2,+++, 101) at 10l equally spaced times
on [0,2]. These values produced rather noisy data, which was used

in following examples; 04.2 - 04.3.

3

—
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EXAMPLE 04.2

For this example we estimate two system coefficients and the

time delay. The model is assumed to have the form
x(t) + 4x(t) + aoi(t-r) + a;x(t-r) = u 1(8)

with initial data

i

xo(s) =1, xo(s) 0, -r<s <0,

and output

x(t)

y(t)
x(t)
For N = 2, 4, 8 and 16 the approximating identification problem
was formulated and a version of the MLE algorithm described in

[ 9] was used to estimate the parameters 36 = 1.0, ar = -1.0 and

r* = 1.0. Start-up values for each run were set at

ag’o = ,75, a N,0

N,O

1 = .8 .

=-.75,r

Except for the N = 2 AVE run, each run converged to reasonablc
estimates for the parametcrs. Again the SPLINE scheme produced
better results. The N = 16 AVE cstimates give about 147 relative

Ll error, while the N = 16 SPLINE estimates have about 1% rclative

4, error. The convergence results for this problem are summarized

1
in Tables 04.2.1 and 04.2.2.

ot Taam e
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Typical data fits for this problem are illustrated in Figures
04.2.1-04.2.4. Note that the data produced by adding the simulated
noise is indeed very '"moisy’. However, at N = 8 both AVE and SPLINE
do a "good" job of fitting the data. In fact, the N = 8 converged
data fits provide nearly perfect matches to the system outputs with-

out the noise.

AVE
~N ~N =N ‘e '
! % ! = N
2 773.3040 ~.9699 65.6704 837.0045
4 2.2051 -.9832 1.8078 2.0297
8 1.3959 ~.9947 1.2547 .6559
16 .7740 -1.0664 1.1142 .4066
v* = 1.0000 -1.0000 1.0000
TABLE 04.2.1
SPLINE
AN ’\N "N
Y 20 4 il Lol
2 1.0813 ~1.0254 .8233 .2834
4 1.0001 -1.0283 .9533 .0751
8 .9881 ~-1.0195 .9937 .0377
16 .9850 -1.0156 1.0013 .0319
v* = 1.0000 -1.0000 1.0000 '

TABLE 04.2.2
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X(t) + 4x(t) + aoi(t-r) + alx(t-r) = u.l(t)

T

L

-

[ R=

3
=

Y1

. 4
+ + + ~
+++ data ag = 1.0 AI = .1.0 rk = 1.0
1 —— AVE Model ag’3 - 1.3959 .%3 - -.9947 ¢%3a1.2547 4
b ———— ¢ ’
0.00 0.40 0.80 1.20 1.60 2.00

FIGURE 04.2.1
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O4. 2NEHV

— %(t) + 4x(t) + aoi(c-r) + alx(t-r) = u_l(:)

+++ data a*¥ = 1.0
——  AVE Model ag’3= 1.3959
L | )
| ot
00 0.40 0.80

TIME

FIGURE 04.2.2
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04.2N8SP

+++ data aa = 1.0 af a .1.0
T 8,3 8,3
——— SPLINE Model ao’ = ,9881 al’ = -1.0195
| | ] ) | | o |
! ] 7 ] 1 i r
0.00 .40 0.80 1.20

TIME

FIGURE 04.2.3
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203 1 9937
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3

J4. 2N85F

2.00 i I T
Y7

4 X(t) + 4x(t) + aon'c(t:-r) + alx(t-r) =y l(t)
1.20
0.40
~0. 41
-1.20 T ., ! + ]

+
1 +++ data 8'6‘ = 1.0 a’]‘: = -1.0 r* = 1.0 -
—— SPLINE Model 38’3 = .9881 af':‘ = -1.0195 3934 9937

~2.00 % } | 1‘ 3 t e B

0.00 0.40 0.80 1.20 1.60 2.00
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TIME

FIGURE 04.2.4
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EXAMPLE 04.3

In this problem all of the system coefficients and the time
delay are estimated. 1In particular the model is assumed to have

the form
%(6) + w’x(t) + agi(t-r) + ax(t-r) = u () ,
with initial data
xo(s) =1, io(s) =0, -rsss0 ,

v and vector output

x(t)
y(t) =
1’ x(t)
: I Start-ups for the true parameter w* = 2.0, 83 = 1.0, af = -1.0, i
; ' r* = 1.0 were set at ;
N,O :
] w0 = /3, ag’°= 5, &’ = =05, 0 8, I
{
l and runs were made for N = 2, 4, 8 and 16.
‘ For N = 2 neither AVE nor SPLINE converged. At N = 4 the AVE é
scheme converged. However, the N = 4 MLE procedure for the SPLINE
' approximation never really converged. The MLE algorithm produced a {
sequence of parameters that oscillated between two values. These
' two values are displayed in Table 04.3.2. Observe that either of
| i
7 i
!

Rl (3R NN 5 DT, 4 SN | B e
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the two parameter estimates obtained by the SPLINE scheme is
better than the AVE estimate. At N = 8 both AVE and SPLINE con-
verged, while at N = 16 the SPLINE procedure again produced two
values for each parameter and the MLE algorithm oscillated between
these values.

The data fits for this example are typical of the previous
examples. Figures 04.3.1-04.3.4 illustrates the N = 8 converged
data fits. The data fits at N = 16 for AVE and SPLINE are almost
the same, and for the SPLINE scheme either of the two parameters

given in Table 04.3.2 produces essentially the same data fits.

AVE
N
o aN N N

y v o) Y P Ll
2 did not <converge _—
4 1.6475 -2.2109 .1635 .8603 4.7269
8 1.8221 1.6184 -.4164 .8807 1.3799
16 1.7647 1.2959 ~.3349 .7405 1.1963
v* = 2.0000 1.0000 -1.0000 1.0000

TABLE 04.3.1

2T TN T T A e m e e - b
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X ull 2 Gt T lel
2 did not converge —_—
4 2.1246 .6354 -1.4428 1.4526 1.3846
4 2.1191 .6633 -1.4263 1.4161 1.2982
8 1.9671 1.0641 - .9164 .9381 L2425
16 1.9436 1.1155 - .8410 .9074 4235
16 1.9736 1.0529 - .9373 .9573 . 1847
v* 2.0000 1.0000 -1.0000 1.0000
TABLE 04.3.2
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UH. SNBHV

LIH= 4

1.50 T 1 T
N
4 () + wix(t) + agk(t=T) + ayx(t-r) = u_ (t) -
1.10
g.70
0.30
+ . + + + +*
+ o+
-0.11 T ¢ ' i
+++ data wk = 2.0 33 = 1.0 a’{ = -1.0 rk= 1.0
1 —— AVE Model «°?%=1.8221 ag”‘-1.6184 af'“--.alsa 2% 8807 -
-0.50 H 3 % { ] f——ro 4 R—
0.00 0.40 0.80 1.20 1.60 2.00

T IME

i FIGURE 04.3.1




l -107-~
‘ OU. 3N8AY [1R- 1 |
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1.2¢ T ]
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- -0. 41 3
I
|
| 1,20 + T w
.
' _J_ +++ data w* = 2,0 ag = 1.0 af = -1.0 r* = 1.0 _J
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i TIME |
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ID MODEL 05

This model is the second order oscillator considered in ID
MODEL O0l, with vector output. However, data was generated on a
longer time interval by numerically integrating the equations. 1In

particular, the system is governed by the delay equation
X(t) + 36x(t) + 2.5x(t-1) + 9x(t-1) = u l(t) s

with initial data

[y

xo(s) =1, xo(s) 0O, -1€£8¢0 ,

and vector output

Yl(t) x(t)

y(t) =
yo(t) X(t)

This system was numerically integrated (using a modified 4th order
scheme) to obtain the solution on the interval [0,5]. Data was
generated at 101 equally spaced points (i.e. 20 data points per
unit interval) using this numerical solution.

As a rough check of the numerically produced data, the
numerical solution and the analytic solution were compared on the
interval [0,2]. The numerical solution agreed exactly (i.e. to
eight decimal places) with the analytic soluticn, giving some in-

dication that the data for this model is reasonably good.
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As a final comment, we mention that the numerical algorithm
used to integrate the delay equation 1is completely unrelated to
any of the approximation schemes used in the identification
algorithms. Consequently, we are not using data generated by the

algorithm that we are attempting to study.
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EXAMPLE 05.1

For this example we seek to estimate the time delay and two

system coefficients. The model is assumed to be of the form

%(t) + 36x(t) + aoi(c—r) + a;x(t-r) = u, (@,

with initial data

xo(s) =1 , xo(s) =0 , -rss<0 ,

and vector output

x(t)
y(t) =

x(t)

Recall that in this example we have data generated for 5 seconds,
i.e. on the interval [0,5], at 101 points. The parameters to be

estimated are r* = 1.0, 36 = 2.5 and af = 9.0. Start-up values

for each run were

N,0

1 = 9.5

Other start-up values were attempted and the algori ims were found
to diverge if the start-up errors were too large and in some cases
the algorithms converged to parameters differemt than r¥, a6, ax.

1

Runs for N = 2, 4, 8 and 16 were made for both AVE and SPLINE.

This again shows that there can be a lack of global identifiability.
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For low N, the AVE scheme did not converge. However, both AVE and
SPLINE converged for larger N and produced reasonable estimates of
the parameters. These results are summarized in Tables 05.1.1 and
05.1.2. Observe that at N = 16 the SPLINE procedure produced
estimates with approximately 2% relative Ll error, while the N = 16
AVE estimates have relative Ll error greater than 22%.

The data fits for this example are very interesting. This
example is very dynamic and oscillatory on the interval (o,5].
However, at N = 16 both AVE and SPLINE produce fairly good data
fits, with the SPLINE scheme matching the data better than AVE.
Figures 05.1.1 - 05.1.4 show the iteration O and converged data
fits for the AVE scheme. Figures 05.1.5-05.1.8 illustrate the

same thing for the SPLINE procedure.

! AVE
AN AN I\N

y i 3 A lepl

2 did not converge _—

4 did not converge —

8 <2492 2.8002 - 3.8982 13.9492

16 .9106 1.7439 10.9570 2.8025

vk = 1.0000 2.5000 9.0000 i

TABLE 05.1.1
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SPLINE
~N ~N N

N i % ol et
2 did not converge —_—
4 .6812 -2.3261 11.7017 7.8466
s .9985 2.9163 8.9459 L4719
16 1.0000 2.6016 9.0872 . 1888

* = 1.0000 2.5000 9.0000

TABLE 05.1.2
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1D MODEL K1

This is a model with continuous kernel. The system is governed

by the equation

%(t) = -3x(t-1) - j‘l’ x(t+s)ds +u_| (t)

with initial data

!
—

xo(s) = -1 €£s<0 ,

and output

y(t) = x(t) .

This equation can be transformed to a system of two equations with
no integral term (see pages 63-64 of [ 9 ]) and solved using the
method of steps. The analytic solution was obtained by this pro-
cedure and data was generated at 10l equally spaced points on [0,2].
This data was used in the following examples; Kl.1l, Kl.4.

ORI A AT o

~- o —— —-—.’--—-———“-‘1
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EXAMPLE K1.1

In this example we attempt to identify the kernel by assuming
that it is constant function with unknown value. Therefore, the

model is of the form
x(t) = -3x(t-1) + k Ig x(tks)ds + u (6
with initial data
xo(t) =1, -1gss<0 ,

and output

y(t) = x(t) .

The constant k¥ = -1,0 is to be estimated. Runs at N = 2,4,8,16
were made with the start-up of

N,0 _

k 0 .

This example is interesting for several reasons. It is an
example that contains a distributed delay and it is the only
example we have run where the AVE scheme produced better parameter
estimates than the SPLINE scheme. Table Kl.l.l illustrates the
convergence of the parameter estimates for AVE and SPLINE. Figures
K1.1.1 and K1.1.2 compare the N = 8 converged data fits for AVE and

SPLINE, respectively. Observe that even though the N = 8 AVE scheme

produced a better parameter estimate, the N = 8 SPLINE gcheme does a
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much better job of fitting the data.

AVE SPLINE
~N ~N
O N
2 -1.2953 -2953 2 -1.2679 .2679
4 -1.0765 .0765 4 -1.0827 . 0827
8 -1.0156 .0156 8 -1.0301 .0301
16 -1.0058 .0058 16 -1.0177 .0177
k* -1.0000 k* -1.0000

TABLE Kl.1.1

JrT
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1L INBOP

2.1 [ ' S I
| x(t) = -3x(t-1) +k 1‘0 x(t+s) ds + u ,(t)
] ) .1
l +++ data k* = -1.0

1.20

——— SPLINE Model

]

TIME

FIGURE KlL.1.2
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EXAMPLE Kl.4

In this example we estimate two system coefficients and the
time delay. As before, the kermel is estimated by assuming that
it is an unknown but constant function. Therefore, the model is
assumed to be of the form

x(t) = ajx(t-r) + k [0 x(t+s) ds + u XOW
-r

with initial data
xo(s) =1 , -rsss0 ,

and output

y(t) = x(t) .

The true parameters af = -3.0, k¥ = -1,0 and r* = 1.0 we estimated

using start-ups of

%= 3.5 M0 15, NOa s,

Runs were made for N = 2,4,8 and 16. The AVE scheme did not con-
verge for N = 2 and 4. However, for N = 8 and 16 the AVE scheme
converged but produced rather poor parameter estimates. The SPLINE
scheme converged for each N = 2,4,8,16 and for N 2 4 produced good
parameter estimates. The numerical results for this problem are

summarized in Tables Kl.4.1 and K1.4.2.

Figures Kl.4.l1 - Kl.4.4 compare the N = 8 AVE and SPLINE data




e

-129-
fits. In particular, Figures Kl.4.l and Kl1.4.2 show the N = 8 AVE
Figures K1.4.3

start-up and converged data fits, respectively.

and Kl.4.4 show the same thing for the SPLINE procedure.

AVE
AN o *N AN
~ b z ha 2 Loyl
2 did not converge
4 did not converge
8 .8802 .2182 -4.1641 2.0657
16 .9383 -.3806 -3.5535 1.2346
v*¥* = 1.0000 -1.0000 -3.0000
TABLE Kl.4.1
SPLINE
~N *N ~N
N r k a |eN|
2 .9100 - 4376 -3.4478 1.1002
4 .98%6 -1.0087 -3.0580 0771
8 1.0018 -1.0390 -2.9953 .0455
16 1.0042 -1.0410 -2.9841 .0611
y* = 1.0000 -1.0001 -3.0000

TABLE Kl.4.1
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Summary Remarks &

The major lesson of our experience with the AVE and SPLINE i
identification procedures is that SPLINE is generally superior and
commonly displays near quadratic convergence. It has been observed
that the error function EN can have multiple relative minima. In
order to solve the IDN problem we have used a maximum likelihood
estimator (MLE), which in the case of a scalar measurement, is

equivalent to the usual quasi-linerization (QL) procedure for

, . N S
minimizing E°'. Conditions that guarantee convergence of the QL

procedure are rather stringent (see [ 7)) and, in fact, arc not
satisfied in our examples. In applications it would seem prudent
to employ a hybrid algorithm for the IDN problem, wherein one

would initially use a method that guarantees descent and then

employ QL only in the neighborhood of a minimizing point.
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6. The optimal ccntrol problem: numerical examples.

In this secticn we present numerical results for a number of
examples of the optimal control problem (0C). The two schemes
AVE and SPLINE were employed to compute approximating optimal
controls ﬁﬂ and ﬁg for several values of N chosen to illustrate
convergence properties. The linear systems examples given here
are essentially the same as some of the examples considered in
detail in 76 ]. For these examples the analytic solution u* of the
optimal control problems can be found in §3 of that report and we
shall not redrive those solutions here. Only one (C8) of the
linear examples presented below was not considered specifically
in [ 6 J; however for the particular case detailed here the optimal
control can be computed by using the maximum principle for delay
systems in the same manner as was done for Example 10 of [ 6 ].
Since the report [ 6] is rather complete and easily obtained, we
shall feel free to use the results presented in that technical
report without elaborate comment c: discussion. For the motivation
behind our choice of some of the particular examples presented
here and in [ 6 ], the interested reader can consult [ 6 ].

We also present below our numerical findings for two nonlinear
examples. The theory for use of the AVE approximations with a
restricted but reasonable class of nonlinear system optimal cuntrol

problems 1s developed in [ 1]. Consideration of the arguments given

there along with details of the SPLINE scheme development in [ & |




-136-

should convince the reader that a corresponding theory for the

SPLINE scheme can be developed in a straightforward manner.
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EXAMPLE C1l

The first system is given by the scalar ecuation

#

x(t) = x(t - 1) +u(t), 0 <t <3

with initial data

x(s) 1, -l<s<0,

fit

and the payoff is chosen as

3
I = 5(x(3)7% + 5 § [u()1? s .
0

The optimal control u* is given by (see page 11 in [ 6]

6{-(t-2)%/2-3/2}, 0 st <1,
uk(t) = s(t - 3) , 1 gt €2

-8 ,y 2 5t <3,
where § = 370/{6(1 #319/3)} = .5745. The optimal cost is
J* = J(u*) = 1.7715.

Table (Cl.l) compares 3N and J* for each of the two schemes

AVE and SPLINE. The example is somewhat typical in that (as

one might expect from theoretical investigations - both methods are
basically first order, but the estimates for SPLINE indicate that
one should expect slightly faster convergence for this scheme)
SPLINE converges faster than AVE. Note that the error for SPLINE

at N = 4 is less than the error for AVE at N = 32.
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Table (CL.2) contains the CPU times for each run of the
conjugate-gradient algorithm. As shown, the time to make each run

is very reasonable for both schemes, although SPLINE requires

slightly more time per run. These times were typical for all the

scalar examples.

N ~N
*
A and us to u

for N = 4, 8, 16, 32. We observe that SPLINE provides a better

Tables (C1.3) and (Cl.4) compare the controls U

approximation to u* than AVE. It is interesting to note that SPLINE

is not as monotone in its convergence as AVE,

TT—
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I Tt SRR S T

-

AVE SPLINE
N ;oo N 3 |3N-0%|
4 1.72491 . 0466 4 1.77320 .0017
8 1.74750 .0240 8 1.77179 .00029
16 1.75939 .0121 16 1.77164 .00014
32 1.76551 .00599 f{ 32 1.77159 .00009
J* = 1.7715 J* = 1.7715
TABLE Cl.1
——
AVE SPLINE
N CPU Sec N CPU Sec
= —_— 4 _ -_
4 23.8 4 30.6
8 28.9 8 39.1
16 39.1 16 59.5
32 56.1 32 93.5
TABLE Cl.2
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AVE
cime Y -8 .16 32 .
0.00  -2.0050  -2.0067  -2.0075  -2.0086  -2.0108
0.25  -1.7340  -1.7386  -1.7400  -1.7405  -1.7450
0.50  -1.4994  -1.5069  -1.5092  -1.5092  -1.5081
0.75  -1.2962  -1.3064  -1.3112  -1.3124  -1.3106
1.00  -1.1197  -1.1317  -1.1402  -1.1448  -1.1500
1.25  -0.9662 - .9774 - .9877 - .9955  -1.0054
1.50 - .8335 - .8397 - .8463 - .8527 - .8618
1.75 - .7214 - .7201 - .7170 - .7151 - .7181
2.00 - .6324 - .6272 - .6179 - .6082 - .5745
2.25 - .5708 - .5720 - .5708 - .5706 -~ .5745
2.50 - .5385 - .5527 - .5623 - .5683 -~ .5745
2.75 - .5291 - .5504 - .5621 - .5683 - .5745
3.00 - .5286 - .5504 - .5621 - .5683 - .S5745

TABLE Cl.3

TR I T O g o W Ty WP AN
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SPLINE
u¥ LS Ll6 ﬁ32 u
-2.0177 -2.0109 -2.0109 -2.0109 -2.0108
-1.7447 -1.7439 -1.7413 -1.7416 -1.7415
-1.5053 -1.5070 -1.5081 -1.5084 -1.5081
-1.3083 -1.3094 -1.3105 -1.3106 -1.3106
-1.1506 -1.1501 -1.1495 -1.1491 -1.1500
-1.0085 -1.0027 -1.0061 -1.0054 -1.0054
- .8591 - .8648 - .8629 - .8615 - .8618
- 7123 - 7147 - .7199 - .7178 - .7181
- .6095 - .5928 - .5844 - .5805 - .5745
- .5759 - .5746 - .5749 - .5746 - 5745
- .5816 - .5750 - .5748 - .5746 - .5745
- .5694 - .5774 - .5745 - .5746 - 5745
- .5149 - .5418 - .5574 - .5658 - .5745
TABLE Cl.4

D

SR U SRR ¢ B 3 o R . . g e —— B SR el AU~ WY A Y "*"1 -
TS an T e T N S N AR it v O T - Sy : ; ad! hod e 3
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EXAMPLE C2

In this control problem, which is the same rs Example 3B ot

" 6., we take as our system the scalar equation

i(t) g x(t-1) + u(t) , 0Ost g2

with initial data

x(s) =1 , -1 s <0
The payoff is given by
2 '2 2
Ju) = 5[x(2)]" + % S [u(s)]” ds .
0

The optimal control is given by (see page 56 in [ 6))

s{m/2)(1-t) + 1], 0stsl,

5 , lstg2,
where 6 = - .9967 (see page 12 of [ 6 ]) and the optimal cost is
J*x = J(u*) = 2.6787 .

Table (C2.l) summarizes the convergence properties of jN to
J* and compares the AVE and SPLINE schemes. Again we observe an
improvement by using the SPLINE scheme. Tables (C2.2) and (C2.3)
contain the control values for AVE and SPLINE. A graphical

comparison of u ﬁs and u* is presented in Figure C2.1.

Al




- N

N J |30 N N Eassty
4 2.6765 .0022 4 2.6827 . 0040
8 2.6891 .0104 8 2.6801 .0014
16 2.6894 .0107 16 2.6792 .0005
32 2.6864 .0077 32 2.6790 .0003
J% = 2.6787 J* = 2.6787
TABLE C2.1
AVE
time o4 -8 <16 32 "

0.00  -2.6371  -2.6122 -2.5962  -2.5834  -2.5623
0.25  -2.1679  -2.1568 -2.1583  -2.1629  -2.1709
0.50 --1.7783  -1.7653 -1.7645  -1.7703  -1.7795
0.75  -1.4593  -1.4324 -1.4086  -1.3933  -1.3881
1.00  -1.2112  -1.1762 -1.1363  -1.1005 - .9967
1.25  -1.0410  -1.0240 -1.0069 - .9975 - .9967
1.50 - .9521 - .9709 - .9837 - .9910 - .9967
1.75 - .9263 - .9646 - .9831 - .9910 - .9967
2,00 - .9248 - .9645 - .9831 - .9910 - .9967

TABLE C2.2




SPLINE

t ime a .8 ule w32 ux
0.00 -2.5732 -2.5679 -2.5643 -2.5626 -2.5623
0.25 -2.1750 -2.1652 -2.1725 -2.1708 -2.1709
0.50 -1.7649 -1.7858 -1.7822 -1.7789 -1.7795
0.75 -1.3669 -1.3778 -1.3927 -1.3871 -1.3881
1.00 -1.0907 -1.0465 -1.0236 -1.0129 - .9967
1.25 - .9986 - .9966 - .9976 - .9968 - .9967
1.50 -1.0102 - .9987 - .9974 - .9968 - .9967
1.75 - .9904 -1.0028 - .9968 - .9968 - .9967
2.00 - .8955 - .9409 - .9672 - .9815 - .9967
TABLE C2.3
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EXAMPLE C3

In this cxample the system is two dimensional and is described
by
xl(t) 0 1 (_xl(t) 0 o0 xl(t-l;1 0

= + |+ u(t),

d
dt -1y
xz(t) 0 0 xz(t) 0 -1 x2(t li_l 1

where 0 < t € 2 and the initial data is chosen as

xl(s) 10

XZ(S) 0

The cost functional is given by
2 2 2
SORE SENCHI S IO STy
0

This system is equivalent to the second order equation (sve Example

5in [6 J])
¥(t) + y(t-1) = u(t),

where xl(t) = y(t) and xz(t) = §(t). The optimal control is given

by (see pages 18 and 66 of [6 ])
f

(/2) (3-t%) , O0s<tgl,
u*(t) = <

5(2 - t) , 1<t g2,

.

where & = -3.1915, and the optimal cost is
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J* = J(u¥) = 15.9574 .

Lo,

~

Table C3.1 illustrates the convergence of JN to J* for AVE

— eme R

and SPLINE. It is interesting to compare the CPU times (Table (3.2)
for this two dimensional example with Table (Cl.2) for the scalar

problem, Example Cl. Note that the total CPU time increased only a

few seconds. Tables (C3.3) and (C3.4) compare Gi and Gg to u*,

Note that ng is almost identical (to 3 places) to u¥*! g
3
;
E v
F AVE SPLINE :
N 3N 5N g% N Sa 13N %] §
b, — —_ - —_— —_ — :
: 4 17.3450 1.3876 4 16.0149 .0575 R
8 16.7215 .7641 8 15.9721 L0147 :
| 16 16.3604 .4030 16 15.9618 . 0044 E

J 32 16.1649 .2075 32 15.9594 .0020
; J* = 15.9574 J* = 15.9574 N

TABLE C3.1

i
{
‘ !
v
H




AVE SPLINE T
N CPU Sec N CPU Sec
4 25.5 4 28.9
8 28.9 8 40.8
16 34.0 16 62.9 ‘
32 54.4 32 105.4 J

TABLE C3.2
AVE )

time E‘ﬁ 38 16 ~32 -
0.00 -4.8886 -4.8486 -4.8210  -4.8044 -4.7872
0.25 -4.7309 -4.7186 -4.7063 -4.6982 -4.6875 .
0.50 -4.4217 -4.4065 -4.3988  -4.3947 -4.3883
0.75 -3.9406 -3.9124 -3.8976 -3.8919 -3.8896
1.00 -3.3083 -3.2590 -3.2275 -3.2099 -3.1915 j
1.25 -2.5562 -2.4926 -2.4499  -2.4239 -2.3936 ‘
1.50 -1.7279 -1.6711 -1.6359 -1.6164 -1.5957 .
1.75 - .8670 - .8360 - .8180 - .8082 - 7979
2.00 0.00 0.00 0.00 0.00 0.00

TABLE C3.3

o e v ——s

.

- e T
. A




§ -149-
i
1
B\
SPLINE
time o 8® et 82 ux
0.00  -4.8629 -4.8047  ~4.7918  -4.7885 -4.7872
0.25  -4.7443 -4.7024  -4.6908  -4.6884 ~4.6875
1 | 0.50  -4.409% “4.3940  -4.3906  -4.3889 -4.3883 ;
j 0.75  -3.8599 -3.8852  -3.8880  -3.8893 -3.8896
¥ 1.00  -3.1497 -3.1794  -3.1883  -3.1906 -3.1915 |
1.25 -2.3598 -2.3835  -2.3909  -2.3930 -2.3936
| 1.50  -1.5463 -1.5829  -1.5925 -1.5950 -1.5957
1.75 - .7381 - 783 - .7942 - .7970 - 7979
2.00  0.00 0.00 0.00 0.00 0.00 J
TABLE C3.4

— ———y - ‘--—..—---;-- —_— g—- —:-«-:"' BT TR AR u‘_v.-»:ﬂ:{‘:»m:" X
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EXAMPLE C4

Consider now the three dimensional system

=7 [0 1 0! x, (£-1) l”o‘l
4 : xz(t) }=‘ 0 0 1 { x2(t-l)‘ +[—0 ,u(t) ,

dt j
i‘x3(t)‘1 !~p 0 0—} x3(t-1ZJ {J

on the interval 0 < t < 3. We choouse as initial function the

EXO) 1071

xz(s) = 0 , ~lss<0 ,

3¢ L?

constant vector

and the cost is defined by

2 3 2
I = (oI + % { Lae)]” s
0

This is the same problem as Example 6 in the report [ 6 ]. The

optimal control is found to be (see page 70 of [ 6 ])

& (1 - t)2 s 0O<tsgl,
u*(t) =
0.0 s lgts 3,
where § = -.4975, and
J* = 4.9751

A numerical summary for this problem is presented in Table

v i

(C4.1)-(C4.4) and Figure (C4.1). The total CPU time is quitc

reasonable, even for this 3 dimensional system. Note that for
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compute the difference |JN-J*|.

SPLINE it was necessary to carry JN out to 6 places in order to

LTIyt ——p—

AVE SPLINE
N SRR Kt I 1 SR iy
4 4.9216 .0595 4 4.9754 .0003
8 4.9504 .0248 8 4.9752 .0001
16 4.9635 .0l116 16 4.9752 .0001
32 4.9696 .0055 32 4.9752 .0001
J* 4.9751 J* 4.9751
TABLE C4.1
AVE SPLINE
ik CPU Sec X CPU Sce
4 40.8 4 54.4
8 51.0 8 81.6
16 69.7 16 129.2
32 107.1 32 221.0
TABLE C4.2
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AVE
time & & a® a2 u*
0.00 -.7201 -.6159 -.5577  -.5274 -.4975
0.25 -.4914 -.3958 -.3402  -.3102 -.2798
0.50 -.3153 -.2326 -.1830  -.1548 -, 1264
0.75 -.1871 -.1212 -.0819  -.0591 -.0311
1.00  -.1002 -.0537 -.0281  -.0145 0.0
1.25 -.0469 -.0190 -.0065  -.0017 0.0
1.50 -.0183 -.0049 -.0009  -.0001 0.0
1.75  -.0055 -.0008 0.00 0.00 0.0
2.00 -.0011 -.0001 0.00 0.00 0.0
2.25 -.0001 0.00 0.00 0.00 0.0
2.50  0.00 0.00 0.00 0.00 0.0
2.75 0.00 0.00 0.00 0.00 0.0 |
3.00 0.00 0.00 0.00 0.00 0.0 |
TABLE C4.3 I
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SPLINE
time Qﬁ gﬁ gig QEE u*
0.00 -.4932 -.4961 -.4966 -.4968 -.4975
0.25 -.2767 -.2791 -.2793 -.279 -.2798
0.50 -.1256 -. 1245 -.1242 -.1242 -.1264
0.75 -.0397 -.0322 -.0313 -.0311 -.0311
1.00 -.0052 -.0016 -.0005 -.0002 0.00
1.25 -.0015 -.0003 0.00 0.00 0.00
1.50 -.0005 0.00 0.00 0.00 0.00
1.75 -.0001 0.00 0.00 0.00 0.00
2.00 0.00 0.00 0.00 0.00 0.00
2.25 0.00 0.00 0.00 0.00 0.00
2.50 0.00 0.00 0.00 0.00 0.00
2.75 0.00 0.00 0.00 0.00 0.00
3.00 0.00 0.00 0.00 0.00 0.00
TABLE C4.4
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EXAMPLE C5

This example involves a two dimensional system with two
controls. The equation is (sec Example 7 in [ 6]) given by

"H" r oo

xl(c) ‘ 0 0 Xy (£ - 1) l1 0 ul(t)'

|
£ +

dt x, (€) ‘ ’\x (t -1J 0 1 Luz(t)j ,

where 0 < t € 2, and the initial data is defined by

F; (s) ‘ iw
l

X, (s)_Jj Llj

The cost function is taken as

\H
)

—
n
1)
W
o

2
3@ = 5{x @17 + @1 + % ( (@)% + [uy)1°) s
“0

The optimal control is (see pages 25 and 73 of [ 6]) found to

be
“1*(':)‘]
U*(t) = ’
u *(t)
where
p+ 6(1 - t) , 0<stsx<l,
ul*(t) =
o s lsts 2,
and
uz*(t) = 6 , 0<tsg2,

T T A A S T ¢ g -
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with

w = -0.1880 and & = -0.8718

The optimal payoff has value

Jx = 1.4017 .

SRETN IO TGN ), AR

The results for this problem are summarized in Tables (C5.1)-(C5.5),

and Figures (C5.1) - (C5.2).

! ]

AVE ! SPLINE .

N i [Ny ‘ N N ;JN-J*I !

| 4 1.3620 0397 4 1.4072 .0055 |
I |

: 8 1.3839 .0178 1 8 1.4035 .0018 {
’ |

i 16 1.3940 L0077 16 1.4022 . 0005 ]

‘ 32 1.3983 0034 | 32 1.4019 .0001 |

! ) I

i 1 |
| |

'l J* = 1.4017 [ J* = 1.4017 J

TABLE C5.1

R o s ¢ .-
aduabitin’ 3 sas Xal X el okt S a
adar ol ﬁ.hiiiiiiﬁiiﬁsiizzghhﬂ,
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' e
AVE - uy
' | time ﬁ E’i Exf_ a2? uf
;’ 0.00 -1.0250  -1.0383  -1.0489 -1.0546  -1.0598 |
l  0.25 - .8239 - .8261 - .8320 - .8368 - .8418 ;
| | 0.50 - .6342 - .6219 - .6181 - .6195 - .6239 ,
' 0.75 - .4639 - .4373 - .4188 - .4087 - .4060 | 1
1.00 - .3236 - .2919 - .2656 - .2449 - .1880 { ;j.
# 1.25 - .2248 - .2051 - .1927 - .1872 - .1880 | ;
1 1.50 - .1725 - .1748 - .1797 - .1836 - .1880 f
3 1.75 - .1574 - .1712 - .1793 - .1836 - .1880 l
; 2.00 - .1564 - .1711 - .1793 - .1836 - .1880 J

S Ry e e N 10 ey
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1
SPLINE - ul
e SO
0.00 -1.0531 -1.0641 -1.0607 -1.0597 -1.0598
0.25 - .8340 - .8398 - .8415 - .8411 - .8418
| 0.50 - .5980 - .6227 - .6226 - .6224 - .6239
0.75 - 3732 - .3931 - 4045 - .4035 - 4060
1.00 - .2202 - .2066 - .1978 - .1945 - .1880 ?
| 1.25 - .1677 - 1781 - .1832 - .1856 - .1380
E 1.50 - .1716 - .1800 - .1831 - .1856 - .1880
! 1.75 - .1698 - .1807 - .1830 - .1856 - .1880
5 2.00 - .1533 - .1695 - .1776 - .1827 - .1880

WIE S by BBV WP g AT i e < ST
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EXAMPLE C6
We consider a control problew with system given by the scalar
vquation
x(t) = x(t) + x(t -1) + u(t), 0<tzsg 2,
and initial data
x(s) : 1 , -1 « s <0,
The cost function is defined by

- , 2
s = 3 @7 e (el e
0

The optimal control (see Example 4 on pages 14 and 63 in [6]) is

given by
& [ez-t + (1 -t)el-t] , 0<stsl,
u?'c(t) =
2-
6 e t , lsts<2,
where & = -.3932 and
J* - 3.1017

The numerical results for this example are summarized in Tables
(C6.1)-(C6.3). OUbscrve apain that the SPLINE scheme gives better

approximations to the payoff and control than AVE.

Y

e o

. 2

T

A g e - RS

peeay =g
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AVE SPLINE

N 5N [3%-0%) N i |§N-%]

4 3.0084 0933 4 3.1108 . 0092

8 3.0554 .0462 8 3.1047 .0031

16 3.0797 .0219 16 3.1030 .0013
32 3.0915 0101 32 3.1026 .0009

J 3.1017 J* = 3,1017
TABLE C6.1
AVE

time ol g g thi ur
0.00 -3.9668 -3.9702 -3.9726  -3.9734 -3.9742
0.25 -2.8512 -2.8662 -2.8754  -2.8807 -2.8870
0.50 -2.0497 -2.0672 -2.0759  -2.0808 -2.0863
0.75 -1.4759 -1.4917 -1.4964  -1.4968 -1.4986
1.00 -1.0684 -1.0843 -1.0883  -1.0868 -1.0688
1.25 - 7835 - 8042 - .8154 - .8221 - .8324
1.50 - .5876 - .6136 - .6298 - .6389 - .6483
1.75 - 4517 - .4765 - .4904 - .4975 - 5049
2.00 - .3515 - L3711 - .3819 - .3875 - .3932

TABIE C6.

2

RS B S sinad AR Ewalilai 4 v 0y
- . L Trota o .
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SPLINE
Lame & g at® 332 u*
0.0 -3.49717 -3.9737 -3.9735 -3.9733 -3.9742
U.25 L) -2.8854 -2.8870 -2.8864 -2.8870
0.5 2ouBly -2.0894 -2.0871 2.0858 -2.0863
.75 -1.500l -1l.4908 -1.4998 -1.4981 -1.4986
1.00 -1.U949 -1.0821 -1.0757 -1.0728 -1.0688
1.25 - .8330 - .8326 - .8326 - .8323 - .8324
1.50 - .6535 - .6488 - .6484 - .6482 - .6483
1.75 - .5012 - .5070 - .5048 - .5048 - .5049
2.00 - .3590 - .3727 - .3819 - .3872 - .3932

TABLE C6.3

4
8
;
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EXAMPLE C7

This example is an interesting two dimensional problem for

which the SPLINE scheme is clearly superior to the AVE scheme. It

is the same as Example 9 in [ 6 ]. The equation is i

rxl(t) ro ] fo o F(l(t—l) 0|

| |

d i =, + + u(t) ,

dt
t_xz(t) ‘-1 0 xz(t) 0 -1 |x2(t-1) L_l
[

rm—c L e

R

where 0 < t < 2, and the initial condition is given by
[l -
xl(s) } 10

-1 50

1]

1
x,(s) b0

The equation is the vector formulation oi the sccond order scalar
equation

y(t) + y(t - 1) + y(t) = u(t),

which describes an harmonic oscillator with delayed damping. The

cost function is given by

2
s = 5T @3 4% o)1’ s
0

The optimal control (see pages 31 and 81 in _ 6 )) is given by

& sin ('J.-L)+%(l-L) sin(t-1), Ogt<gl,

u*(t) =

& sin (2 ~ t) , lgts?l,

- ;
S Pt A CRLA T O it .
PG R T TR T T
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where & - 2.5599. The optimal cost is

J* - 3.3991

This example demonstrates just how much improvement one can obtain

by using the SPLINE scheme in place of AVE. E

In order to check the convergence rates of the two algorithms,

we assume that

! eN = l 3N - J* 1 = Kl(l/N)B

fi and

gN = “‘ ﬁN - u¥* “LZ -t KZ(I/N)E ’
£l

where Kl’ K2 and 8 are constants. The convergence rate, 8, can be

used to compare the two schemes. For example, an algorithm with

g = 2.0 provides faster convergence than an algorithm with 8 = 1.0.

Solving the above equations for B, we find that

8 =rey/e, ) = nEy/F,)

n2 2

Consequently, B can be estimated from the numerical results. Table
~N

C7.1 indicates the computced value of 8 for J - J*. Note that 2 is

approximately one for AVE and two for SPLINE. The values of

WGN - u*' used in Table C7.4 were estimated by using a simple
2

| Euler scheme for the integration. Again, the convergence rate B 1

is approximately one for AVE and two for SPLINE.
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T AVE L_ SPLINE
H r
A N I IS S R AR K PR
42,1515 1.2475 8 | .5354 1363 1.96
8  2.6711  .7280 .88 8 4345 0354 1.91|
16 3.0035  .3956 94 | 16 .4085  .0094 175
32 3.1929  .2062 I 4019 .0028 . --|
J% = 3.3991 J* = 3.3991 J
TABLE C7.1
) AVE
pime 3% @ i 82 uk
0.00  1.0403 .1386 1.1931  1.2212 1.2506
0.25 1.4574 6371 1.7451  1.8038 1.8645
0.50 1.7277 .9522 2.0898  2.1664 2.2467
0.75 1.8163 L0447 2.1839  2.2628 2.3501
1.00 1.7136 9110 2.0259  2.0882 2.1541
1.25  1.4369 .5839 1.6644  1.7052 1.7449
1.50  1.0259 .1209 1.1727  1.1997 1.2273
1.75  .5313 .5788 .6052 .6191 .6333
2.00  0.00 .00 0.00 0.00 0.00

TABLE C7.2
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SPLINE
time o e &t 52
0.00  1.3669 1.2786 1.2579  1.2527
0.25 1.9770 1.8937 1.8717  1.8666 !
0.50  2.3287 2.2683 2.2530  2.2485 2667 |
0.75  2.3805 2.3611 2.3527  2.3511 .3501
1.00  2.1609 2.1552 2.1545  2.1543 1541
1.25  1.7446 1.7440 1.7447  1.7451 L7449
1.50  1.2018 1.2210 1.2258  1.2271 .2273
1.75  .5902 .6232 .6308 .6328 .6333
2.00  0.00 0.0 0.00 0.00 .00
TABLE C7.3
AVE SPLINE

vl e |y e, 8

4 .5650 .95 4 .0954 1.96

8 .2931 .92 8 .0245 1.95

16 11553 .97 16 .0063 1.75

32 .0795 --- 32 .0018 ----

TABLE C7.4

st o+ et
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EXAMPLE C8

Except for the initial data this problem is the same as

Example 10 in [ 6. The system is described by the two dimensional

{—xl(t) o 1 "_xl(t)_} Mo o ['x (t- 1)} (o
+-

‘+! t IU(L) N
! |
0O -1.. x,(t) i-1 0 ' %, (t- l) ,1

A I T P L L L. ,:

where 0 € t s 2, and initisl data given by
| xq(s) (—10-1
I . i , - 1ss<0.
bo
L

The system is the vector formulation of the second order scalar

vquation

e W)

4
d

(a4
e AR T

XZ(S)

equation

(t) + y(t) + y(t-1) = u(v)

The payoff is taken to be

1 0 x1(2) 2 2
5{0x(2), %, |y e R ( [u®]" as
AR

i

J(u)

B{Ix, @22 + D,@3% + 4 Q Lucs)T ds .
“0

1 10
Proceeding exactly as in [ 6 ] with ® =[0] replaced by ¢ = [O

(see pages 36-453), one fiuds that the optimal control is given by

B N Y Laal Yo e

I W W oY o M ¢ T T




-170-

(-8)et ™% + [2u-36-(u-8)tle"  + 6(t+2)-p, Ostsl,

U*(t) =
2

+ & , 1lstg2,

(u‘é)et-

where § = -.2593 and p == 5.2262. The resulting optimal cost is

J* = 19.7479

The convergence of jN to J* is summarized in Table (C8.1).

Again, the convergence rates (i.e.,B) agree with the expccted

~N . .
theoretical values. The convergence of u to u* is described by

Tables (C8.2)-(C8.4) and plots of Gﬁ, ag and u* are given in

Figure (C8.1)

AVE SPLINE
S R o I N K o U p
4 17.9646 1.7832 .87 4 19.9843 L2364 2.39
8 18.7745 .9733 .95 8 19.7929 .0450 1.72
16 19.2439 .5039 .99 16 19.7616 .0137 1.48
32 19.4935 .2543 --- 32 19.7528 .0049 ————
J* = 19.7479 J¥ = 19,7479
TABLE C8.1
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T e

AVE 1
time &% ® &t &2 _ut “
0.00  -.9029 -.8782 -.8712  -.8701 -.8710 %
0.25  -.3412 -.2688 -.2307  -.2133 -.1993
; 0.50 .2526 .3612 .4276 4636 .4975
0.75  .8643 9879  1.0680  1.1170 1.1745 4
1.00  1.4926 1.6054 1.6739  1.7132 1.7587 i
| 1.25  2.1585 2.2469 2.2927  2.3139 2.3319 ;
ig | 1.50  2.9139 2.9886 3.0277  3.0476 3.0678 ;
2; 175 3.8368 3.9187 3.9645  3.9883 4.0128 %
1; | 2.00  5.0122 5.1115 5.1673  5.1962 5.2202 |
y 4
TABLE C8.2 3
SPLINE
cime & & i &2 u*
0.00  -.8775 -.9746 -.9297  -.9010 8710 |
0.25  -.1303 -.2995 -.2441  -.2231 -.1993
§ 0.50 6421 4472 4667 4785 .4975
E 0.75  1.3224 1.1445 1.1595  1.1662 1. 1745
! 1.00  1.9007 1.739 1.7560  1.7575 1.7587
| 1.25  2.5345 2.3528 2.3485  2.3399 2.3319
1.50  3.3597 3.1217 3.1068  3.0871 3.0678
1.75  4.2533 4.1425 4.0785  4.0463 4.0128 |
2.00  4.9126 5.0619  5.1643  5.1955 5.2262 7
TABLE C8.3

e e ke A ]
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AVE

SPLINE

6N -u),

.0944
.0293
.0083

.0022

1.69

1.81

1.90

|=

16

32

~N
! —yuel
u*}l

‘U

{m

2

.0875 2.52

.0153 2.26

.0032 1.84

.0009 ----

TABLE C8.4
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EXAMPLE C9

This example is the same as Example 13 in [ 6 ] (with

= = 1, see page 97 of { 6 ]). The system is governed by thu

1T Y2
equation
{-xl(t) 0 1 xl(t) 0 0 [;l(t_l) 1 0 {;1(c;1
d
EE = + t i ’
{-xz(t) 0 -1 x2(t) -1 0 | xy(r-1) 0 1 {fZ(L)

with 0 < t < 2 and initial data

xl(s) 10 -]

xz(s) 0

The cost function is given by

2
J = %{[xl(z)jz + [x2(2)]2] + % S {[ul(s)]2 + [uz(S)Jz} ds .

Although the optimal control and optimal cost have not been
computed, the numerical results given in the following tables
are similar to the previous ¢xamples. Again it appears

that SPLINE provides improved convergence properties over AVE.

SR dare eV I
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* ' 4

; y
i _ §
' AVE SPLINE '
! N N 2NN N 132NN f
4 16.2927 .7615 4 18.0819 .1814 :
8 17.0542 4084 8 17.9005 .0348
16 17.4626 .2014 16 17.8657 .0090
‘ 32 17.6640 --=-- 32 17.8567  -----
,‘ TABLE C9.1
{
' AVE - uy f
i time Ga %8 G16 632 4
1 "1 1 1 t
| 0.00 -2.3842 -2.5442 -2.6432  -2.6920
;i 0.25 -1.9485 -2.0417 -2.1157  -2.1601 1
ﬁ 0.50 -1.4369 -1.4407 -1.4639  -1.4947 f
E 0.75 - .8927 - .7962 - .7311 - .7000
% 1.00 - .3798 - .2166 - .0816 L0247 %
1.25 .0235 .1658 .2578 .3042 ;
1.50 .2562 .3092 .3221 L3224 ‘
1.75 .3284 .3271 .3239 L3224
2.00 L3331 .3273 .3239 L3224

TABLE C9.2

s
;
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: } AVE - u, S
s | 0.00 -.3729 -.3578 -.3541 -.3540
I
: 0.25 1412 .1975 .2273 . 26407 |
; 0.50 .6665 .7536 .3068 L8354 |
i 0.75 1.1900 1.2891 1.3527 1,391 E ?
| L 1.00 1.7101 1.7994 1.8512 1.8798 zj
i 1.2s 2.2453 2.3141 2.3453 2.3573
f! 1.50 2.8403 2.8999 2.9258 2.9364 | !
;. 1.75 3.5615 3.6321 3.6650 3.0788 3 E
2.00 4.4788 4.5707 4.6139 4.6321 J ?
1 TABLE C9.3 - é
5 SPLINE - u, é
b
3 t ime gﬁ QE gig gii é
3 0.00 -2.7993 -2.7564 -2.7430 -2.7366 '
0.25 -2.2589 -2.2041 -2.2079 -2.2025
0.50 -1.4849 -1.5456 -1.5454 -1.5400
0.75 - .5920 - .6683 - .7219 - .7100
1.00 L0951 .1992 2532 .2783
1.25 L3615 3467 .3292 .3256
1.50 .3542 .3351 .3295 .3256
f 1.75 .3336 3370 .3294 .3256
i 2.00 .3040 3162 .3196 .3206

TABLF C9.4




SPLINE - up

time

U.00

1.50

1.75

i~ tc)

=~

. 1407
.8248

. 2899

~8
3416
.2604
.9025
1.4784

1.9456

[

L4122

. 9946

[

3.7720

4.4311

i

~lé

. 3488

.2622

.8753

L4520

.9266

.3821

. 9646

.7109

.5281

.8649

L4428

.9185

.37106

.9528

.6988

. 5842

TABLE C9.5
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EXAMPLE Cl¢

This is a nonlinear optimal control problem. Although the
basic idea has been developed only for linecar systems, much ot the
theory has been extended to a general class of nonlinear examples

(see © 1), The system is given by the vquation

- -

Trr) o= x()sinfx(e)] + x(t~1) + u(t), 0 st s 2
with initial data

x(g) =10, -1<s < 0.

The cost function is
42 x 2 - 42
J=5[x(2)]" +3% ) flx(s)]" + Tu(s)17) ds
0
<N . . . I .
Values of J are given in Table (CLO.1). This problem is such that
J* is relative "flat". Consequently, the values of ju and the
~N
controls u changed very little as N - +o. Since the optimal
N .
control u* is not known analytically and @ were cssentially the

. . . -N
same for N » 4, we did not give tables for u

AVE SPLINE
N :’i !JZN_JN N lN— thN_Jr\‘
4 162.020 .0010 4 162.113 0720
8 162.019 .0010 8 162.041 0300
16 162.018 .0030 16 162.011 .0080
32 162.015  ----- 32 162,003  -----

TABLE C10.1

AT LSO | e
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EXAMPLE Cl1

This is a nonlinear example with the same dynamics as

EXAMPLE C10, but different initial condition. The system is

again given by

x(t) = x(t)sin{x(t)] + x(£-1) + u(t), O st s 2,

FEXRL, I Sl S P L

with initial data
x (8) = (s) , -l<s =<0,
where

10(s + 1) , -l ss =%,

y(s) =

AR

-10s , -5 <85 <0 .
The cost functional is given by

2
J(u) = Xx(s)]% + 5§ {Ix()1% + [u()1] ds
0

This nonlinear problem is more interesting thin Example ClO.
Although the optimal control is not known analytically, the
numerical runs indicate that the sequence {GN} is "converging" to
an optimal control. 1f one applies the maximum principle to the

nonlinear control problem, there are two boundary conditions that

the optimal ''state" and multiplicr must satisfy. Using

these boundary conditions as a check for the }

e i £t VAN 1 - r- s . > . e Rt St Mt o 3t
g P g Tem P DR Lot A ey Y g

'

TR
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approximating optimal control problem, we found that the N = 16

SPLINE procedure produced final values of the "state' and

"multipliers'" that most nearly matched the boundary conditions.
In view of this fact and the convergence pattern illustrated in
Tables Cll.1 -Cll.3, it is reasonable to believe that the N = 16 F

SPLINE run gives a good estimate of the optimal control.

Figure Cll.l compares plots of ﬁg, ﬁ: with ﬁ;b. The plots of E

u: for N = 8, 16 and 32 are almost identical.

I N
N i \32N-JN\ } N h 1;12N-.1N1 |
_ — S B — S
4 1.9919 1845 1 4 2. 5406 L0179
L8 2.1764 1341 1 8 2.5227 L0013
16 2.3105 .0907 l 16 2.5240 .0010
32 24012  --m-- 32 2.5230  -ee--

TABLE Cll.1
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‘ I AVE :
g . A ~8 ~16 ~32
' time u_ u_ u__ u " 3
g 0.00 -2.3013 -2.3082 -2.3073 -2.3033 [
i 3
‘ 0.25 -2.0915 -2.1804 -2.2375  -2.2706 i
{ 0.50 -1.8241 -1.9856 -2.1114 -2.1972
0.75 -1.4673 -1.5752 -1.6470 -1.6906
1.00 -1.1190 -1.1447 -1.1417 -1.1317
1.25 - .8349 - .8173 - .7891 - .7697 ¥
1.50 - .6208 - .5966 - .5761 - .5669 g
1.75 - .4580 - L4400 - .4321 - 4329 1
.1 2.00 - .3233 - .3125 - .3098 - .3142
4 TABLE C11.2
1 SPLINE 3
j . A ~8 .16 ~32
' time 4 u_ o o
? 0.00 -2.331 -2.3024 -2.3017 -2.2967
0.25 -2.3707 -2.3230 -2.3156 -2.3101
0.50 -2.2820 -2.3034 -2.3106 -2.3126
| 0.75 -1.6921 -1.7294 -1.7404 -1.7424
)
k: 1.00 -1.0787 -1.1002 -1.1041 -1.1037
B
! 1.25 - .7160 7427 - 7462 - L7497
! 1.50 - .5727 - .5644 - .5588 - .5624
1.75 - .4978 - .4591 - .4502 - 4451
2.00 - .3960 - .3496 - .3559 - .3265

TABLE Cl1.3

|
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Summary Remarks

In examples C7 and C8 we presented some estimates for the rates i

N N ) r

of convergence of J° - J* and u - u. In these cases we found that F:

the AVE scheme provided essentially linear convergence, while SPLINE 4
convergence was essentially quadratic. In view of some known

theoretical facts these results are not unexpected. Specifically,

in [ 5_ it is shown that for fixed control and sufficiently re-

stricted initial data,we have zN - z is 0(1/N8) where B = 1 for AVE
and 8 = 2 for SPLINE. For the linear regulator problem (both OC

and OCN) the optimal control can be generated by state feedback.

If one assumes that the feedback '"parameters' for OCN also converge
to the feedback 'parameters' for OC (see Declfour [10]) like (l/NS),
then it follows that GN -+ u* convergence is 0(1/N8).

Additionally, elementary calculations then reveal that one should

have 3N -~ J* is also O(l/NB). For the first-order (piecewise linear)
spline based method SPLINE, the results presented here, taken with
other numerical experiments that we have performed and reported else-
where (see "8 "), are strong evidence that the method SPLINE

is essentially second order (8 = 2) when used with regulator-type

optimal control problems involving linear delay systems. (This is

not too surprising when onc reviews the literature on finite-element
methods and investigates such phenomena as super convergence for
"coercive problems'" or "supcrconvergence at nodes'.) The AVE scheme,

on the other hand, appears to be at best only first order (8 = 1)
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in these problems.

As 4 further point of comparison we note that SPLINE yields a
better approximation for a given value of N in almost every example
that we have considered (here and c¢lsewhere). Observe that in
many of the control examples (Cl -C4, C6 -C8) the results for
SPLINE at N = 4 are better than those obtained with AVE for N = 32.

While the SPLINE scheme is slightly more tedious to impliment
and takes a little more computer time because ot the matrix systems
that must be solved (see the Remark at the end of $3), all the
evidence would scem to imply that SPLINE is a superior method to
AVE in control problems of the type we consider here.

For control problems with nonlinear systems, the numerical
findings to date are not as dramatic or conclusive (in part perhaps
because analytic solutions are not available). In addition to the
two examples (Cl0, Cll) reported here, numerical studies with other
nonlinear systems tend to support the conjecture that SPLINE will

generally be as good as or better than AVE for nonlinear problems.
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